Basic Image Compression Concepts Presenter: Guan-Chen Pan Research Advisor: Jian-Jiun Ding , Ph. D. Assistant professor Digital Image and Signal Processing Lab Graduate Institute of Communication Engineering National Taiwan University - PowerPoint PPT Presentation

1 / 65
About This Presentation
Title:

Basic Image Compression Concepts Presenter: Guan-Chen Pan Research Advisor: Jian-Jiun Ding , Ph. D. Assistant professor Digital Image and Signal Processing Lab Graduate Institute of Communication Engineering National Taiwan University

Description:

Basic Image Compression ConceptsPresenter Guan-Chen PanResearch Advisor Jian-Jiun Ding, Ph. D.Assistant professorDigital Image and Signal Processing LabGraduate ... – PowerPoint PPT presentation

Number of Views:1516
Avg rating:3.0/5.0

less

Transcript and Presenter's Notes

Title: Basic Image Compression Concepts Presenter: Guan-Chen Pan Research Advisor: Jian-Jiun Ding , Ph. D. Assistant professor Digital Image and Signal Processing Lab Graduate Institute of Communication Engineering National Taiwan University


1
Basic Image Compression ConceptsPresenterGuan-
Chen PanResearch AdvisorJian-Jiun Ding , Ph.
D.Assistant professorDigital Image and Signal
Processing LabGraduate Institute of
Communication EngineeringNational Taiwan
University
2
Outlines
  • Introductions
  • Basic concept of image compression
  • Proposed method for arbitrary-shapeimage segment
    compression
  • Improvement of the boundary region by morphology
  • JPEG2000
  • Triangular and trapezoid regions and modified
    JPEG image compression

3
Introduction
  • Lossless or lossy(widely used)

4
YCbCr
  • Ythe luminance of the image which represents
    the brightness
  • Cbthe chrominance of the image which
    represents the difference between the
    gray and blue
  • Crthe chrominance of the image which
    represents the difference between the
    gray and red

5
Chrominance Subsampling
  • The name of the format is not always related to
    the subsampling ratio.

6
  •  

 
7
  •  

8
Reduce the Correlation between Pixels
  • Transform coding
  • Coordinate rotation
  • Karhunen-Loeve transform
  • Discrete cosine transform
  • Discrete wavelet transform
  • Predictive coding

9
Coordinate rotation
  •  

Weight
Height
10
  • do the inverse transform to get the data and
    reduce the correlation

11
Karhunen-Loeve transform(KLT)
  •  

12
  •  

13
Discrete cosine transform
  • The DCT is an approximation of the KLT and more
    widely used in image and video compression.
  • The DCT can concentrate more energy in the low
    frequency bands than the DFT.

14
Discrete wavelet transform
  • Wavelet transform is very similar to the
    conventional Fourier transform, but it is based
    on small waves, called wavelet, which is composed
    of time varying and limited duration waves.
  • We use 2-D discrete wavelet transform in image
    compression.

15
  •  

16
Predictive Coding
  • Predictive coding means that we transmit only the
    difference between the current pixel and the
    previous pixel.
  • The difference may be close to zero.
  • However, the predictive coding algorithm is more
    widely used in video.
  • EX. Delta modulation (DM), Adaptive DM. DPCM
    ,Adaptive DPCM (ADPCM)

17
Quantization
  •  

18
  • Luminance quantization matrix
  • Chrominance quantization matrix
  • Removes the high frequencies

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99
19
Entropy Coding Algorithms
  • Huffman Coding
  • Difference Coding (DC)
  • Zero Run Length Coding (AC)
  • Arithmetic Coding
  • Golomb Coding

20
Huffman Coding
  • Huffman coding is the most popular technique for
    removing coding redundancy.
  • Unique prefix property
  • Instantaneous decoding property
  • Optimality
  • JPEG(fixed, not optimal)

21
(No Transcript)
22
Difference Coding
  •  

23
Zero Run Length Coding
  • Encode each value which is not 0, than add the
    number of consecutive zeroes in front of it
  • EOB (End of Block) (0,0)
  • Only 4-bit value
  • 57,45,0,0,0,0,23,0,-30,-16,0,,0
  • ?(0,57)(0,45)(4,23)(1,-30)(0,16)EOB
  • Eighteen zeroes, 3 ?(15,0) (2,3)
  • where (15,0) is 16 consecutive zeroes

24
(No Transcript)
25
Arithmetic Coding
  •  

26
(No Transcript)
27
Symbol Probability Sub-interval
k 0.05 0.00,0.05)
l 0.2 0.05,0.25)
u 0.1 0.25,0.35)
w 0.05 0.35,0.40)
e 0.3 0.40,0.70)
r 0.2 0.70,0.90)
? 0.1 0.90,1.00)
  •  

 
28
Symbol Probability Sub-interval
k 0.05 0.00,0.05)
l 0.2 0.05,0.25)
u 0.1 0.20,0.35)
w 0.05 0.35,0.40)
e 0.3 0.40,0.70)
r 0.2 0.70,0.90)
? 0.1 0.90,1.00)
  • 0.071334 ? L
  • For interval 0.050.25

Symbol Probability Sub-interval
k 0.05 0.05,0.06)
l 0.2 0.06,0.1)
u 0.1 0.1,0.12)
w 0.05 0.12,0.13)
e 0.3 0.13,0.19)
r 0.2 0.19,0.23)
? 0.1 0.23,0.25)
  • 0.071334 ? L

29
Golomb Coding
  •  

30
  •  

31
  •  

32
  • Decode 101111
  • q 1, r 9
  • ? a 1019 19

Encoding of quotient part q output
bits 0 0 1 10 2 110 3 1110 4 11110 5 111110 6 1111
110 N ltN repetitions of 1gt0
Encoding of remainder part r offset binary output
bits 0 0 0000 000 1 1 0001 001 2 2 0010 010 3 3 00
11 011 4 4 0100 100 5 5 0101 101 6 12 1100 1100 7
13 1101 1101 8 14 1110 1110 9 15 1111 1111
33
  •  

  Without codeword table Flexibility and adaptation
Huffman NO GOOD
Golomb YES MIDDLE
Adaptive Golomb YES GOOD
34
Proposed Method for Arbitrary-Shape Image Segment
Compression
  • An arbitrary-shape image segment f and its shape
    matrix.

35
  • Standard 8x8 DCT bases with the shape of f

36
  • The 37 arbitrary-shape orthonormal DCT bases by
    Gram-Schmidt process

37
Quantization

38
Improvement of the Boundary Region by Morphology
39
JPEG2000
  • JPEG 2000 is a new standard and it can achieve
    better performance in image compression.
  • Advantages
  • Efficient lossy and lossless compression
  • Superior image quality
  • Additional features such as spatial scalability
    and region of interest.
  • Complexity

40
  • JPEG 2000 encoder
  • Embedded Block Coding with Optimized
    Truncation(EBCOT) Tier-1Tier-2
  • JPEG 2000 decoder

41
(No Transcript)
42
Irreversible component transform (ICT)
  •  

43
Reversible component transform (RCT)
  • Reversible and integer-to-integer

44
(No Transcript)
45
  • Irreversible , Daubechies 9/7 filter

  Analysis Filter Coefficients Analysis Filter Coefficients Synthesis Filter Coefficients Synthesis Filter Coefficients
n Lowpass Filter Highpass Filter Lowpass Filter Highpass Filter
0 0.602949018236 1.115087052456 1.115087052456 0.6029490182363
1 0.266864118442 -0.059127176311 0.591271763114 -0.2668641184428
2 -0.078223266528 -0.057543526228 -0.057543526228 -0.0782232665289
3 -0.0168641184428 0.091271763114 -0.0912717631142 0.0168641184428
4 0.026748757410     0.0267487574108
46
(No Transcript)
47
Tier-1 Encoder
  • Each Fractional Bit-plane coding will generate
    the Context (CX) and the Decision (D), which are
    used for arithmetic coding.
  • zero coding
  • sign coding
  • magnitude refinement coding
  • run length coding

48
Bit-plane Conversion
  • Converts the quantized wavelet coefficients into
    several bit-planes
  • First bit-plane is the sign plane
  • The other planes are the magnitude plane, from
    MSB to LSB

49
17 22 33 48 64 80 96 112
22 28 38 52 67 81 96 112
33 38 48 62 75 86 100 116
48 52 62 70 83 96 110 125
64 67 75 83 96 108 118 132
80 81 86 96 108 117 128 142
96 96 100 110 118 128 140 150
112 112 116 125 132 142 150 160
  • 17 000100012
  • 160 101000002

50
Stripe and Scan Order
51
Zero Coding
d v d
h D h
d v d
  • D current encode data, binary 0 or 1
  • h 02 v 02 d 04

52
Sign Coding
v
h D h
v
  •  

53
Magnitude Refinement Coding
  • s'x,y is initialized to 0, and it will become 1
    after the first time of the magnitude refinement
    coding is met at x,y

54
Run-Length Coding
  • For four zeros (CX,D) is (0,0)
  • Else is (0,1), and use 2 uniform(CX18) to
    record the 1s position
  • (0110)
  • The first nonzero position is (01)2
  • ?(0,1), (18,0), (18,1)

55
D (0,1)
Arithmetic encoder
Compressed data
CX (total 19)
56
Why Called Fractional?
57
Tier-2 Encoder
  • Rate/Distortion optimized truncation

58
Triangular and Trapezoid Regions and Modified
JPEG Image Compression
  • Divide an image into 3 parts
  • Lower frequency regions
  • Traditional image blocks and
  • The arbitrarily-shaped image blocks

59
  • 1 sections
  • 1 sections
  • 1 sections
  • 1 sections
  • 2 sections
  • 2 sections
  • 1 sections
  • 1 sections

1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 0 0
0 0 1 1 0 1 1 1 1 0
0 0 1 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0 0
  • Zone 1
  • Zone 2
  • Zone 3

60
  • a-distance lt threshold

61
  • Corner too close
  • Trapezoid inside the zone

62
N 10
  • N K(m) K(M-1-m)

63
  •  

64
Reference
  1. J.D Huang "Image Compression by Segmentation and
    Boundary Description, " 2008.
  2. G. Roberts, "Machine Perception of
    Three-Dimensional Solids," in Optical and
    Electro- Optical Information Processing, J. T. T.
    e. al., Ed. Cambridge, MA MIT Press, 1965, pp.
    159-197.
  3. J. Canny, "A Computational Approach to Edge
    Detection," IEEE Trans. Pattern Analysis and
    Machine Intelligence, vol. 8, pp. 679-698, Nov.
    1986.
  4. D. Comaniciu and P. Meer, "Mean Shift A Robust
    Approach toward Feature Space Analysis, " IEEE
    Trans. Pattern Analysis and Machine Intelligence,
    vol. 24, pp. 603-619, 2002.
  5. J.J Ding, P.Y Lin, S.C Pei, and Y.H Wang, "The
    Two-Dimensional Orthogonal DCT Expansion in
    Triangular and Trapezoid Regions and Modified
    JPEG Image Compression, ",VCIP2010
  6. J.J Ding, S.C Pei, W.Y Wei, H.H Chen, and T.H
    Lee, "Adaptive Golomb Code for Joint
    Geometrically Distributed Data and Its
    Application in Image Coding", APSIPA 2010
  7. W.Y Wei, "Image Compression", available in
    http//disp.ee.ntu.edu.tw/tutorial.php
  8. K. R. Rao and P. Yip, Discrete Cosine Transform,
    Algorithms, Advantage, Applications, New York
    Academic, 1990.
  9. S.S. Agaian, Hadamard Matrices and Their
    Applications, New York, Springer-Verlag, 1985.
  10. H. F. Harmuth, Transmission of information by
    orthogonal functions, Springer, New York, 1970.

65
  1. R. Koenen, Editor, Overview of the MPEG-4
    Standard, ISO/IEC JTC/SC29/WG21, MPEG-99-N2925,
    March 1999, Seoul, South Korea.
  2. T. Sikora, MPEG-4 very low bit rate video, IEEE
    International Symposium on Circuits and Systems,
    ISCAS 97, vol. 2, pp. 1440-1443, 1997.
  3. T. Sikora and B. Makai, Shape-adaptive DCT for
    generic coding of video, IEEE Trans. Circuits
    Syst. Video Technol., vol. 5, pp. 59-62, Feb.
    1995.
  4. W.K. Ng and Z. Lin, A New Shape-Adaptive DCT for
    Coding of Arbitrarily Shaped Image Segments,
    ICASSP, vol. 4, pp. 2115-2118, 2000.
  5. S. C. Pei, J. J. Ding, P. Y. Lin and T. H. H.
    Lee, Two-dimensional orthogonal DCT expansion in
    triangular and trapezoid regions, Computer
    Vision, Graphics, and Image Processing, Sitou,
    Taiwan, Aug. 2009.
  6. D. A. Huffman, "A method for the construction of
    minimum-redundancy codes," Proceedings of the
    IRE, vol. 40, no. 9, pp. 1098-1101, 1952.
  7. S. W. Golomb, "Run length encodings," IEEE Trans.
    Inf. Theory, vol. 12, pp. 399-401, 1966.
  8. R. Gallager and D. V. Voorhis, "Optimal source
    codes for geometrically distributed integer
    alphabets," IEEE Trans. Information Theory, vol.
    21, pp. 228230, March 1975.
  9. R. F. Rice, "Some practical universal noiseless
    coding techniquespart I," Tech. Rep. JPL-79-22,
    Jet Propulsion Laboratory, Pasadena, CA, March
    1979.
  10. G. Seroussi and M. J. Weinberger, "On adaptive
    strategies for an extended family of Golomb-type
    codes," Proc. DCC97, pp. 131-140, 1997.
  11. C. J. Lian JPEG2000 , DSP/IC design lab, GIEE,
    ntu
Write a Comment
User Comments (0)
About PowerShow.com