Title: EpiS3: a semantically interoperable social network for syndromic surveillance and disease control
1EpiS3 a semantically interoperable social
network for syndromic surveillance and disease
control
- Luciana Tricai Cavalini and Timothy Wayne Cook
- National Institute of Science and Technology
Medicine Assisted by Scientific Computing
2Summary
- The problem
- The current solution
- Remaining challenges
- A new approach
- Implementation
- Future steps
3The problem
4Problem 1 Detecting Cases
First cases detected
Index case
5Fever? Bleeding? Jaundice?
6Problem 2 Decision Making
7(No Transcript)
8(No Transcript)
9(No Transcript)
10The current solution
11Current solution Standardize the data model
12(No Transcript)
13(No Transcript)
14The Current Solution Issues
- Top-down data models
- Risk of inaccurate or incomplete data
- Hospital/clinic centered applications
- No records from uncovered populations
- Incipient Decision Support Systems (DSS)
- Mostly academic projects in internal medicine
15Remaining issues
16 Problem is Accuracy or Utility?
17(No Transcript)
18Remaining Questions
- How to collect data in the most opportune moment?
- At the point of care
- In the household
- How to get data with proper
- ...accuracy...
- ...granularity...
- ...that will allow implementation of useful DSS
for syndromic surveillance?
19How to get...
Dr. Cool
Your patient Jane
Updated her problem list on Apr 29, 2014 533pm -
Fever YES - Bleeding YES - Location Nose
Suspicious case of Acute Febrile Hemorrhagic
Syndrome
What to do
...without creating another data silo?
20A new approach
21Fever? Bleeding? Jaundice?
22MedWeb 3.0 Plugin Suite
Rabies prophylaxis app
Hospital infection control app
AFJHS app
And so on
Bioterrorism app
Poisonous animals app
Minimalistic, XML-based MMD technology
MLHIM-based implementation
Multilevel Model-Driven Approach
Harmonization
23implementation
- Epidemiological Surveillance Support System
(EpiS3)
24Acute Febrile Jaundice Hemorrhagic Syndrome
(AFJHS) App
gt 1 y/o Fever 0-3 wks Jaundice
- gt 1 y/o
- Fever 0-3 wks
- Bleeding signs
- gt 1 y/o
- Fever 0-3 wks
- Jaundice and Bleeding
AFJS
AFHS
AFJHS
Treat malaria
Malaria blood smear test
Positive
Negative
Evaluate current epidemiological profile of the
territory
Hepatitis Yellow Fever Leptospirosis Sepsis Typh
oid Fever
- Dengue
- Sepsis
- Meningococcemia
- Typhoid Fever
- Hantavirus
- Other Arbovirosis
Hepatitis Yellow Fever Leptospirosis Sepsis Typh
oid Fever
AFJHS
AFJS
AFHS
25Reference Model
Concept
Constraint
Definition
26Concept Constraint Definition Generator (CCD-Gen)
www.ccdgen.com
27CCD Library on CCD-Gen
www.ccdgen.com/ccdlib
28AFJHS App Form on CCD-Gen
29AFJHS App CCD Schema
30AFJHS App Sample Data Instances
AFHS with spontaneous bleeding
31AFJHS App Sample Data Instances
AFHS with tourniquet test positive
32AFJHS App Sample Data Instances
AFJS with mucosa jaundice
33Already Implemented
16 AFJHS simulated cases (all possible
classifications)
AFHS
AFJHS
AFJS
- Spontaneous mucosa
- Spontaneous skin
- Spontaneous both
- Tourniquet mucosa
- Tourniquet skin
- Tourniquet both
- Malaria
- Spontaneous bleeding
- Tourniquet test
- Age
- Fever
- Fever duration
- No signs
Negative
a R library that converts the XML data
instances into R data frames
34(No Transcript)
35Future steps
- Epidemiological Surveillance Support System
(EpiS3)
36EpiS3 Future Steps
- App User Interface
- Desktop and mHealth versions
- DSS Algorithms
- Clinical evaluation
- Messaging
- Reporting
- EpiInfo Form Builder for MLHIM data
37- Thank you!
- lutricav_at_lampada.uerj.br
- tim_at_mlhim.org
- google.com/MedWeb30