Assimilation of Remotely Sensed Evapotranspiration Data into a SoilVegetationAtmosphereTransfer Sche - PowerPoint PPT Presentation

1 / 11
About This Presentation
Title:

Assimilation of Remotely Sensed Evapotranspiration Data into a SoilVegetationAtmosphereTransfer Sche

Description:

... Data into a Soil-Vegetation-Atmosphere-Transfer Scheme: Initial Results ... Fully process-based water and energy balance model ... – PowerPoint PPT presentation

Number of Views:74
Avg rating:3.0/5.0

less

Transcript and Presenter's Notes

Title: Assimilation of Remotely Sensed Evapotranspiration Data into a SoilVegetationAtmosphereTransfer Sche


1
Assimilation of Remotely Sensed
Evapotranspiration Data into a Soil-Vegetation-Atm
osphere-Transfer Scheme Initial Results
  • Valentijn R.N. Pauwels, Claudia De Pus,
  • Niko E.C. Verhoest and Francois P. De Troch
  • Laboratory of Hydrology and Water Management,
  • Ghent University, Ghent, Belgium
  • Roeland Samson and Raoul Lemeur
  • Laboratory of Plant Ecology,
  • Ghent University, Ghent, Belgium

Estec, Noordwijk, The Netherlands
April 3, 2003
2
Objectives
  • To assess the possibility to use CHRIS-PROBA data
    for the remote sensing of evapotranspiration
    rates
  • To update the soil moisture state of a
    Soil-Vegetation-Atmosphere-Transfer Scheme
    through the assimilation of the remotely sensed
    evapotranspiration rates

3
Preliminary Results
  • Assessment of the possibility to measure
    evaptranspiration rates under non-ideal
    conditions (sloping grassland)
  • Assimilation of the in-situ observed latent heat
    fluxes and soil moisture values

4
In-Situ Observations
5
Comparison BREB-EC
Sensible Heat Flux
Latent Heat Flux
Av x 56.45 Av y 57.12 R 0.83 RMSE 46.27
Av x 15.85 Av y -22.77 R 0.35 RMSE 59.15
Eddy correlation-based (Wm-2)
Eddy correlation-based (Wm-2)
Bowen ratio-based (Wm-2)
Bowen ratio-based (Wm-2)
6
Diurnal Patterns Energy Balance Closure
Daily Total Net Radiation 0-4 MJm-2 4-8
MJm-2 8-12 MJm-2
Energy Balance Closure (Wm-2)
Time (GMT)
7
Model Simulations
  • Hourly simulations at 1 m spatial resolution
  • Fully process-based water and energy balance
    model
  • Topographically driven lateral redistribution of
    soil water
  • Assimilation of observed latent heat fluxes
    through extended Kalman filtering

8
Baseline Model Results
NET RADIATION
LATENT HEAT FLUX
Av x 65.77 Av y 69.43 R 0.99 RMSE 10.63
Av x 53.06 Av y 46.49 R 0.87 RMSE 35.07
Simulations (Wm-2)
SENSIBLE HEAT FLUX
GROUND HEAT FLUX
Av x 3.11 Av y 1.72 R 0.80 RMSE 9.61
Av x 19.57 Av y 26.58 R 0.72 RMSE 35.64
Observations (Wm-2)
9
Effect of Data Assimilation
UPPER LAYER
LOWER LAYER
BASELINE RUN
BASELINE RUN
Soil Moisture (-)
COMBINED ASSIMILATION
COMBINED ASSIMILATION
Time (Day in 2002)
10
Effect of Data Assimilation
NET RADIATION
LATENT HEAT FLUX
Av x 53.06 Av y 51.51 R 0.89 RMSE 31.65
Av x 65.77 Av y 70.21 R 0.99 RMSE 11.39
Simulations (Wm-2)
SENSIBLE HEAT FLUX
GROUND HEAT FLUX
Av x 3.11 Av y 1.63 R 0.81 RMSE 9.48
Av x 19.57 Av y 22.65 R 0.75 RMSE 31.65
Observations (Wm-2)
11
Preliminary Conclusions
  • BREB and EC methods yield similar estimates of
    latent heat fluxes on the sloping grassland
  • Assimilation at a low temporal resolution of
    in-situ observed latent heat fluxes leads to an
    overall improvement in model results
Write a Comment
User Comments (0)
About PowerShow.com