Hidden Markov Tree Model of the Uniform Discrete Curvelet Transform Image for Denoising - PowerPoint PPT Presentation

1 / 18
About This Presentation
Title:

Hidden Markov Tree Model of the Uniform Discrete Curvelet Transform Image for Denoising

Description:

Hidden Markov Tree Model. of the Uniform Discrete Curvelet ... Kurtosis=3.51 ~Gaussian. Hidden Markov Tree (HMT) Model. Conditional distribution is Gaussian ... – PowerPoint PPT presentation

Number of Views:103
Avg rating:3.0/5.0
Slides: 19
Provided by: Fer91
Category:

less

Transcript and Presenter's Notes

Title: Hidden Markov Tree Model of the Uniform Discrete Curvelet Transform Image for Denoising


1
Hidden Markov Tree Model of the Uniform Discrete
Curvelet Transform Image for Denoising
  • Yothin Rakvongthai

2
Introduction
  • Curvelet Transform (CandesDonoho 1999)
  • Implementation
  • Fast Discrete Curvelet Transform (FDCT) (Candes
    et. al 2005) in frequency domain
  • Contourlet (DoVetterli 2005) in time domain
    with wavelet-like tree structure
  • Uniform Discrete Curvelet Transform (UDCT)
    (NguyenChauris 2008) in frequency domain with
    wavelet-like tree structure

3
Implementation
4
UDCT Marginal Statistics
Kurtosis 23.71
Kurtosis 24.42
Kurtosis E(x-µ)4/s4 . Kurtosis of Gaussian
3
5
Conditional Distribution (1)
  • On parent (same position in next level)

P(XPX)
Bow-tie shape? uncorrelated but dependent
6
Conditional Distribution (2)
  • On parent
  • P(XPXpx)
  • Kurtosis3.51
  • Gaussian

7
Hidden Markov Tree (HMT) Model
  • Conditional distribution is Gaussian
  • X depends on PX
  • ? Use HMT to model the coefficients
  • HMT model links between the hidden state
    variables of parent and children
  • HMT parameters (parameters of the density
    function) can be trained using the
    expectation-minimization (EM) algorithm

8
Tree Structure of UDCT
9
HMT (1)
  • c(j,k,n) coefficient in scale j, direction k,
    position n
  • S(j,k,n) hidden state taking on values
  • m S or L with density function
    P(S(j,k,n))
  • Conditioned on S(j,k,n)m, c(j,k,n) is Gaussian
    with mean µm(j,k,n) and variance
  • s2m(j,k,n) (mS?small variance, mL?large
    variance)

10
HMT (2)
  • The total pdf
  • P(S(j,k,n)), µm(j,k,n), s2m(j,k,n) can be trained
    from the EM algorithm (Crouse et al 1998).
  • Define T set of P(S(j,k,n)), µm(j,k,n),
    s2m(j,k,n)

11
Denoising (1)
  • Problem formulation y xw
  • y?noisy coefficients
  • x?denoised coefficients
  • w?noise coefficients with known variance
  • Want to estimate x from the knowledge of y and
    variance of w

12
Denoising (2)
  • Obtain T from EM algorithm
  • The variance of denoised coefficients is

13
Denoising (3)
  • The estimate of x

14
Denoising Results (1)
PSNR Peak Signal to Noise Ratio
15
Denoising Results (2)
SSIM Structure Similarity Index (Wang et. al
2004)
16
Denoising Results (3)
Original Noisy (14.14dB)
Wavelet (25.73dB)
(SSIM 0.112)
(SSIM 0.561)
Contourlet (25.85dB) DT-CWT (26.54dB) UDCT
(27.32dB)
(SSIM 0.590) (SSIM 0.579)
(SSIM 0.676)
17
Denoising Results (4)
Original Noisy (14.14dB)
Wavelet (23.38dB)
(SSIM
0.184) (SSIM 0.508)
Contourlet (22.94dB) DT-CWT (24.15dB) UDCT
(24.35dB)
(SSIM 0.479) (SSIM 0.557)
(SSIM 0.570)
18
Denoising Results (5)
Original Noisy (14.14dB)
Wavelet (25.25dB)
(SSIM
0.110) (SSIM 0.539)
Contourlet (25.51dB) DT-CWT (25.99dB) UDCT
(26.51dB)
(SSIM 0.555) (SSIM 0.553)
(SSIM 0.627)
Write a Comment
User Comments (0)
About PowerShow.com