REZIP – Advanced Fault Detection, Isolation and Restoration Algorithm - PowerPoint PPT Presentation

About This Presentation
Title:

REZIP – Advanced Fault Detection, Isolation and Restoration Algorithm

Description:

Presentation technology of REZIP – Advanced Fault Detection, Isolation and Restoration Algorithm using by Tavrida Automatic Circuit Reclosers – PowerPoint PPT presentation

Number of Views:30
Updated: 19 July 2021
Slides: 35
Provided by: TavridaElectric

less

Transcript and Presenter's Notes

Title: REZIP – Advanced Fault Detection, Isolation and Restoration Algorithm


1
REZIP Advanced Fault Detection, Isolation and
Restoration Algorithm
Rec15/25 Automatic Circuit Reclosers 15 kV, 16
kA, 630 A 27 kV, 12.5 kA, 630 A
2
Typical Challenges of Utilities
  • Vast overhead MV network contributes to high
    SAIDI/SAIFI indices
  • Difficult to protect very long feeders and loops
    due to protection coordination requirements
  • Limited redundancy and back-feed capability
  • Ageing grid infrastructure and obsolete equipment
  • Investment programs budget shortage

3
Why Implement Self-healing in Smart Grids
4
Traditional Power Supply Restoration Response Time
Customer reports outage
Feeder back to normal
Power restored to healthy sections of the feeder
Fault occurs
Fault located
Travel time
Patrol time
Switching time
Repair time
5-10 minutes
15-30 minutes
20-120 minutes
10-20minutes
1-4 hours
50-180 minutes
5
Power Supply Restoration Response Time with FDIR
- Fault Detection, Isolation, and Restoration
Power restored to healthy sections of the feeder
Customer reports outage
Feeder back to normal
Fault occurs
Fault located
Travel time
Patrol time
Repair time
5-10 minutes
15-30 minutes
10-60 minutes
1-4 hours
0-5 minutes!
6
FDIR Key Building Block for Self-healing Grid
Sec
Mid
Sec
Mid
Tie
Tie
Sec
Mid
Sec
Mid
7
FDIR Schemes Summary
Voltage Current and Time based solutions Peer-to-Peer solutions Computer/DMS/SCADA
Simplicity High Medium High
Total costs Low Medium High
Depending on communication No Yes Yes
Speed Medium High Medium
Grading limit Yes No No
Scalability No Medium High
8
FDIR Schemes Summary
Voltage Current and Time based solutions Peer-to-Peer solutions Computer/DMS/SCADA
Simplicity High Medium High
Total costs Low Medium High
Depending on communication No Yes Yes
Speed Medium High Medium
Grading limit Yes ? No! No No
Scalability No ? Yes! Medium High
Rezip algorithm
9
Rezip Philosophy Network Reconfiguration
10
Rezip Algorithm Hardware
  • Rezip is supported by Rec15/25 Automatic Circuit
    Reclosers
  • Maintenance free
  • Lightest weight
  • Plug and play design

11
Rezip Algorithm Principle of Operation
Example Long feeder with multiple Rezip
reclosers in series and backfeed capability
R1
R2
R4
R3
R5
CB1
R6
Substation Circuit breaker
Radial Recloser
Radial Recloser
ABR Recloser
REZIP Recloser
REZIP Recloser
REZIP Recloser
Tt 0.5s
Tr 6s
Tt 0.3s
Tt 0.7s
Tt(D) - 10s Tt(I) - 0.1s Delayed
Tt(D) - 10s Tt(I) - 0.1s Delayed
Tt(D) - 10s Tt(I) - 0.1s Delayed
Tt - Tripping time Tr Restoration time
12
Rezip Algorithm Principle of Operation
Permanent fault occurs
R1
R2
R4
R3
R5
CB1
R6
Substation Circuit breaker
Radial Recloser
Radial Recloser
ABR Recloser
REZIP Recloser
REZIP Recloser
REZIP Recloser
Tt 0.5s
Tr 6s
Tt 0.3s
Tt 0.7s
Tt(D) - 10s Tt(I) - 0.1s Delayed
Tt(D) - 10s Tt(I) - 0.1s Delayed
Tt(D) - 10s Tt(I) - 0.1s Delayed
Tt - Tripping time Tr Restoration time
13
Rezip Algorithm Principle of Operation
Upstream radial recloser tries to clear the fault
R1
R2
R4
R3
R5
CB1
R6
Substation Circuit breaker
Radial Recloser
Radial Recloser
ABR Recloser
REZIP Recloser
REZIP Recloser
REZIP Recloser
Tt 0.5s
Tr 6s
Tt 0.3s
Tt 0.7s
Tt(D) - 10s Tt(I) - 0.1s Delayed
Tt(D) - 10s Tt(I) - 0.1s Delayed
Tt(D) - 10s Tt(I) - 0.1s Delayed
OC1 trip
Tt - Tripping time Tr Restoration time
14
Rezip Algorithm Principle of Operation
1st reclosing attempt is unsuccessful
R1
R2
R4
R3
R5
CB1
R6
Substation Circuit breaker
Radial Recloser
Radial Recloser
ABR Recloser
REZIP Recloser
REZIP Recloser
REZIP Recloser
Tt 0.5s
Tr 6s
Tt 0.3s
Tt 0.7s
Tt(D) - 10s Tt(I) - 0.1s Delayed
Tt(D) - 10s Tt(I) - 0.1s Delayed
Tt(D) - 10s Tt(I) - 0.1s Delayed
OC1 trip 1st reclose
Tt - Tripping time Tr Restoration time
15
Rezip Algorithm Principle of Operation
Recloser trips again
R1
R2
R4
R3
R5
CB1
R6
Substation Circuit breaker
Radial Recloser
Radial Recloser
ABR Recloser
REZIP Recloser
REZIP Recloser
REZIP Recloser
Tt 0.5s
Tr 6s
Tt 0.3s
Tt 0.7s
Tt(D) - 10s Tt(I) - 0.1s Delayed
Tt(D) - 10s Tt(I) - 0.1s Delayed
Tt(D) - 10s Tt(I) - 0.1s Delayed
OC1 trip 1st reclose OC2 trip
Tt - Tripping time Tr Restoration time
16
Rezip Algorithm Principle of Operation
Once the Loss of supply is detected, all Rezip
reclosers will trip during the dead-time period
and their protection mode is changed to
Instantaneous
R1
R2
R4
R3
R5
CB1
R6
Substation Circuit breaker
Radial Recloser
Radial Recloser
ABR Recloser
REZIP Recloser
REZIP Recloser
REZIP Recloser
Tt 0.5s
Tr 6s
Tt 0.3s
Tt 0.7s
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
OC1 trip 1st reclose OC2 trip
LS trip
LS trip
LS trip
Tt - Tripping time Tr Restoration time
17
Rezip Algorithm Principle of Operation
2nd reclosing of Radial recloser is successful so
it will restore power supply to the closest Rezip
recloser(s) and activate their Auto-Reclosing
Loss of Supply (ARLS) timer
R1
R2
R4
R3
R5
CB1
R6
Substation Circuit breaker
Radial Recloser
Radial Recloser
ABR Recloser
REZIP Recloser
REZIP Recloser
REZIP Recloser
Tt 0.5s
Tr 6s
Tt 0.3s
Tt 0.7s
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
OC1 trip 1st reclose OC2 trip 2nd reclose
LS trip
LS trip
LS trip
Tt - Tripping time Tr Restoration time
18
Rezip Algorithm Principle of Operation
After the ARLS time delay Rezip reclosers will
start closing one by one looking for the fault to
isolate it
R1
R2
R4
R3
R5
CB1
R6
Substation Circuit breaker
Radial Recloser
Radial Recloser
ABR Recloser
REZIP Recloser
REZIP Recloser
REZIP Recloser
Tt 0.5s
Tr 6s
Tt 0.3s
Tt 0.7s
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
OC1 trip 1st reclose OC2 trip 2nd reclose
LS trip LS reclose
LS trip
LS trip
Tt - Tripping time Tr Restoration time
19
Rezip Algorithm Principle of Operation
By the time next Rezip recloser is closed by the
ARLS, the upstream Rezip OC/EF protection is
disabled, so no grading between Rezip reclosers
is needed
R1
R2
R4
R3
R5
CB1
R6
Substation Circuit breaker
Radial Recloser
Radial Recloser
ABR Recloser
REZIP Recloser
REZIP Recloser
REZIP Recloser
Tt 0.5s
Tr 6s
Tt 0.3s
Tt 0.7s
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
OC1 trip 1st reclose OC2 trip 2nd reclose
LS trip LS reclose
LS trip LS reclose
LS trip
Tt - Tripping time Tr Restoration time
20
Rezip Algorithm Principle of Operation
Thus, if any of them detects the fault, it will
trip before the upstream protection device and
will go into Lockout
R1
R2
R4
R3
R5
CB1
R6
Substation Circuit breaker
Radial Recloser
Radial Recloser
ABR Recloser
REZIP Recloser
REZIP Recloser
REZIP Recloser
Tt 0.5s
Tr 6s
Tt 0.3s
Tt 0.7s
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
OC1 trip 1st reclose OC2 trip 2nd reclose
LS trip LS reclose
LS trip LS reclose OC2 trip LOCKOUT
LS trip
Tt - Tripping time Tr Restoration time
21
Rezip Algorithm Principle of Operation
After predefined Restoration time, the ABR
recloser will initiate the same sequence to
restore power supply to healthy sections from the
other side
R1
R2
R4
R3
R5
CB1
R6
Substation Circuit breaker
Radial Recloser
Radial Recloser
ABR Recloser
REZIP Recloser
REZIP Recloser
REZIP Recloser
Tt 0.5s
Tr 6s
Tt 0.3s
Tt 0.7s
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
OC1 trip 1st reclose OC2 trip 2nd reclose
LS trip LS reclose
LS trip LS reclose OC2 trip LOCKOUT
LS trip
ABR closed
Tt - Tripping time Tr Restoration time
22
Rezip Algorithm Principle of Operation
The final goal is to isolate the fault by the
closest protection devices
R1
R2
R4
R3
R5
CB1
R6
Substation Circuit breaker
Radial Recloser
Radial Recloser
ABR Recloser
REZIP Recloser
REZIP Recloser
REZIP Recloser
Tt 0.5s
Tr 6s
Tt 0.3s
Tt 0.7s
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
OC1 trip 1st reclose OC2 trip 2nd reclose
LS trip LS reclose
LS trip LS reclose OC2 trip LOCKOUT
LS trip LS reclose
ABR closed
Tt - Tripping time Tr Restoration time
23
Rezip Algorithm Principle of Operation
The whole sequence was complete in less than 10s!
Fault sectionalized
R1
R2
R4
R3
R5
CB1
R6
Substation Circuit breaker
Radial Recloser
Radial Recloser
ABR Recloser
REZIP Recloser
REZIP Recloser
REZIP Recloser
Tt 0.5s
Tr 6s
Tt 0.3s
Tt 0.7s
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
Tt(D) - 10s Tt(I) - 0.1s Instantaneous
OC1 trip 1st reclose OC2 trip 2nd reclose
LS trip LS reclose
LS trip LS reclose OC2 trip LOCKOUT
LS trip LS reclose OC2 trip LOCKOUT
ABR closed
Tt - Tripping time Tr Restoration time
24
Rezip Algorithm Advantages
  • No time grading is required between

25
Rezip Algorithm Advantages
  • Any number of Rezip reclosers can be connected in
    series

Real case - oil/gas-condensate field power supply
26
Rezip Algorithm Advantages
  • Easily scalable solution no need for hardware
    modifications or logic reconsideration related to
    grid expansion


RezipSettings
RezipSettings
27
Rezip Algorithm Advantages
  • Algorithm operation does not depend on
    communications Yet it always possible to
    connect with SCADA to provide dispatcher with
    full grid visibility and remote control!

IEC 60870-5-104 Modbus DNP3 TELARM Protocol
optional
28
Rezip Algorithm Advantages
  • Rezip reclosers can be easily transformed back to
    regular Radial or Ring line reclosers since this
    is just a matter of firmware

USB RS-232 Bluetooth
29
Daqing Oilfield Company Limited Customer Case
  • Thousands of nodding donkey oil pumps are
    energized through an extensive overhead
    electrical network - numerous faults
  • The network arrangement is highly meshed and
    complicated

30
Daqing Oilfield Company Limited Customer Case
  • Automated protection performed only by feeder CB
    at substation
  • All the line sectioning breakers were not
    automated
  • Every single failure on the network required
    human intervention
  • Even transient faults lead to significant outages
  • Harsh climatic conditions (temperatures from -39
    C to 40 C, snow, ice, floods and storms) -
    extremely difficult to maintain the network

31
Daqing Oilfield Company Limited Customer Case
  • Project outcomes
  • Direct savings (outage time reduction ? loss of
    revenue reduction)
  • Indirect savings (operation, maintenance and
    repair costs reduction)
  • Power supply quality and reliability improvement
  • Drastically improved network visibility and
    operator awareness

32
Daqing Oilfield Company Limited Customer Case
  • Additional benefits
  • Step by step sections switching high cold load
    currents avoided
  • No need for manual motor contactors further
    reduce the down time
  • All x6 Rezip reclosers on single line were
    installed and commissioned in just one day!

33
Conclusions
  • Rezip algorithm is a very cost-effective and
    future-proof solution to implement automation
    projects of complex distribution networks
  • Protection coordination and scalability issues
    solved
  • Doesnt depend on communication infrastructure
  • Easy engineering, setup and commissioning

34
(No Transcript)
User Comments (0)
About PowerShow.com