ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits Power Consumption in a CMOS Circuit - PowerPoint PPT Presentation

About This Presentation
Title:

ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits Power Consumption in a CMOS Circuit

Description:

ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering ... Charge recovery and adiabatic switching circuits. Simulation-based power estimation tool ... – PowerPoint PPT presentation

Number of Views:80
Avg rating:3.0/5.0
Slides: 36
Provided by: vishwani1
Category:

less

Transcript and Presenter's Notes

Title: ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits Power Consumption in a CMOS Circuit


1
ELEC 5970-001/6970-001(Fall 2005)Special Topics
in Electrical EngineeringLow-Power Design of
Electronic CircuitsPower Consumption in a CMOS
Circuit
  • Vishwani D. Agrawal
  • James J. Danaher Professor
  • Department of Electrical and Computer Engineering
  • Auburn University
  • http//www.eng.auburn.edu/vagrawal
  • vagrawal_at_eng.auburn.edu

2
Class Projects
  • Study of leakage dynamic power in nanometer
    devices
  • Low leakage technologies
  • Charge recovery and adiabatic switching circuits
  • Simulation-based power estimation tool
  • Transistor-sizing for low power
  • Logic and flip-flop design for low power
  • Low power clock distribution
  • Low power arithmetic circuits
  • Low power memory design
  • Benchmarking of low power microprocessors
  • Low power system design

3
Components of Power
  • Dynamic
  • Signal transitions
  • Logic activity
  • Glitches
  • Short-circuit
  • Static
  • Leakage

Ptotal Pdyn Pstat Ptran Psc Pstat
4
Power of a Transition Ptran
VDD
Ron
ic(t)
vi (t)
vo(t)
CL
Rlarge
Ground
5
Charging of a Capacitor
R
t 0
v(t)
i(t)
C
V
Charge on capacitor, q(t) C v(t) Current,
i(t) dq(t)/dt C dv(t)/dt
6
i(t) C dv(t)/dt V v(t) /R
dv(t) V v(t) --- ----- dt RC
dv(t) dt ? ----- ?----- V v(t)
RC
-t ln V v(t) -- A RC
Initial condition, t 0, v(t) 0 ? A ln V
-t v(t) V 1 exp(---) RC
7
-t v(t) V 1 exp( -- ) RC
dv(t) V -t i(t) C --- -- exp(
-- ) dt R RC
8
Total Energy Per Charging Transition from Power
Supply
8 8 V2 -t Etrans ? V i(t) dt ? -- exp(
-- ) dt 0 0 R RC CV2
9
Energy Dissipated per Transition in Resistance
8 V2 8 -2t R ? i2(t) dt R -- ?
exp( -- ) dt 0 R2 0
RC 1 - CV2 2
10
Energy Stored in Charged Capacitor
8 8 -t V -t ? v(t) i(t) dt
? V 1-exp( -- ) - exp( -- ) dt 0 0
RC R RC 1 - CV2 2
11
Transition Power
  • Gate output rising transition
  • Energy dissipated in pMOS transistor CV2/2
  • Energy stored in capacitor CV2/2
  • Gate output falling transition
  • Energy dissipated in nMOS transistor CV2/2
  • Energy dissipated per transition CV2/2
  • Power dissipation

Ptrans Etrans a fck a fck CV2/2
a activity factor
12
Short Circuit Current, isc(t)
VDD
VDD - VTp
Vi(t)
Vo(t)
Volt
VTn
0
Iscmaxf
isc(t)
Amp
Time (ns)
tB
tE
1
0
13
Peak Short Circuit Current
  • Increases with the size (or gain, ß) of
    transistors
  • Decreases with load capacitance, CL
  • Largest when CL 0
  • Reference M. A. Ortega and J. Figueras, Short
    Circuit Power Modeling in Submicron CMOS,
    PATMOS96, Aug. 1996, pp. 147-166.

14
Short-Circuit Energy per Transition
  • Escf ?tBtE VDD isc(t)dt (tE tB) IscmaxfVDD
    /2
  • Escf tf (VDD- VTp -VTn) Iscmaxf /2
  • Escr tr (VDD- VTp -VTn) Iscmaxr /2
  • Escf 0, when VDD VTp VTn

15
Short-Circuit Energy
  • Increases with rise and fall times of input
  • Decreases for larger output load capacitance
  • Decreases and eventually becomes zero when VDD is
    scaled down but the threshold voltages are not
    scaled down

16
Short-Circuit Power Calculation
  • Assume equal rise and fall times
  • Model input-output capacitive coupling (Miller
    capacitance)
  • Use a spice model for transistors
  • T. Sakurai and A. Newton, Alpha-power Law MOSFET
    model and Its Application to a CMOS Inverter,
    IEEE J. Solid State Circuits, vol. 25, April
    1990, pp. 584-594.

17
Short Circuit Power
Psc a fck Esc
18
Psc vs. C
0.7µ CMOS
45
Decreasing Input rise time
3ns
Psc/Ptotal
0.5ns
0
35
75
C (fF)
19
Psc, Rise Time and Capacitance
VDD
Ron
ic(t)isc(t)
vi (t)
vo(t)
CL
tr
tf
Rlarge
vo(t) --- R?
Ground
20
isc, Rise Time and Capacitance
-t VDD1- exp(-----)
vo(t) R?tf (t)C Isc(t) ----
-------------- R?tf (t) R?tf (t)
21
iscmax, Rise Time and Capacitance
i
Small C
Large C
vo(t)
vo(t)
iscmax
1 ---- R?tf (t)
t
tf
22
Psc, Rise Times, Capacitance
  • For given input rise and fall times short circuit
    power decreases as output capacitance increases.
  • Short circuit power increases with increase of
    input rise and fall times.
  • Short circuit power is reduced if output rise and
    fall times are smaller than the input rise and
    fall times.

23
Technology Scaling
  • Scale down by factors of 2 and 4, i.e., model
    0.7, 0.35 and 0.17 micron technologies
  • Constant electric field assumed
  • Capacitance scaled down by the technology scale
    down factor

24
Bulk nMOSFET
Polysilicon
Gate
Drain
W
Source
n
n
L
p-type body (bulk)
SiO2 Thickness tox
25
Scaling Factor, a
  • Constant electric field
  • L L / a
  • W W / a
  • tox tox / a
  • VDD VDD/a
  • Capacitance ? 1/a
  • Gate delay ? 1/a
  • Area ? 1/a2
  • Power dissipation ? 1/a2
  • Power density constant
  • Doping ? a

26
Technology Scaling Results
L0.17µ, C10fF
70
60
L0.35µ, C20fF
Psc/Ptotal
37
16
12
L0.7µ, C40fF
4
1
Input tr or tf (ns)
0.4
1.6
27
Effects of Scaling Down
  • 1-16 short-circuit power at 0.7 micron
  • 4-37 at 0.35 micron
  • 12-60 at 0.17 micron
  • Reference S. R. Vemuru and N. Steinberg, Short
    Circuit Power Dissipation Estimation for CMOS
    Logic Gates, IEEE Trans. on Circuits and Systems
    I, vol. 41, Nov. 1994, pp. 762-765.

28
Summary Short-Circuit Power
  • Short-circuit power is consumed by each
    transition (increases with input transition
    time).
  • Reduction requires that gate output transition
    should not be faster than the input transition
    (faster gates can consume more short-circuit
    power).
  • Increasing the output load capacitance reduces
    short-circuit power.
  • Scaling down of supply voltage with respect to
    threshold voltages reduces short-circuit power.

29
Components of Power
  • Dynamic
  • Signal transitions
  • Logic activity
  • Glitches
  • Short-circuit
  • Static
  • Leakage

30
Leakage Power
VDD
IG
Ground
R
n
n
Isub
IPT
ID
IGIDL
31
Leakage Current Components
  • Subthreshold conduction, Isub
  • Reverse bias pn junction conduction, ID
  • Gate induced drain leakage, IGIDL due to
    tunneling at the gate-drain overlap
  • Drain source punchthrough, IPT due to short
    channel and high drain-source voltage
  • Gate tunneling, IG through thin oxide

32
Subthreshold Current
Isub µ0 Cox (W/L) Vt2 exp(VGS-VTH)/nVt
µ0 carrier surface mobility Cox gate oxide
capacitance per unit area L channel length W
gate width Vt kT/q thermal voltage n a
technology parameter
33
IDS for Short Channel Device
Isub µ0 Cox (W/L) Vt2 exp(VGS-VTH?VDS)/nVt
VDS drain to source voltage ? a
proportionality factor
34
Increased Subthreshold Leakage
Scaled device
Ic
Log Isub
0
VTH
VTH
Gate voltage
35
Summary Leakage Power
  • Leakage power as a fraction of the total power
    increases as clock frequency drops. Turning
    supply off in unused parts can save power.
  • For a gate it is a small fraction of the total
    power it can be significant for very large
    circuits.
  • Scaling down features requires lowering the
    threshold voltage, which increases leakage power
    roughly doubles with each shrinking.
  • Multiple-threshold devices are used to reduce
    leakage power.
Write a Comment
User Comments (0)
About PowerShow.com