Computacin Evolutiva Protemica Un anlisis de representaciones de ubicacin libre basadas en proteomas - PowerPoint PPT Presentation

1 / 20
About This Presentation
Title:

Computacin Evolutiva Protemica Un anlisis de representaciones de ubicacin libre basadas en proteomas

Description:

Self-assemble into a characteristic three-dimensional shape ... Genomics focus on the study of organism genomes: complete set of genes ... – PowerPoint PPT presentation

Number of Views:49
Avg rating:3.0/5.0
Slides: 21
Provided by: igar6
Category:

less

Transcript and Presenter's Notes

Title: Computacin Evolutiva Protemica Un anlisis de representaciones de ubicacin libre basadas en proteomas


1
Computación Evolutiva ProteómicaUn análisis de
representaciones de ubicación libre basadas en
proteomas utilizando el algoritmo genético
proporcional
  • Iván Garibay, Ph.D.
  • Office of Research and Commercialization
  • School of Electrical Engineering and Computer
    Science
  • Evolutionary Computation Laboratory
  • University of Central Florida
  • igaribay_at_mail.ucf.edu
  • http//ivan.research.ucf.edu

Version 2.0 110304 104AM
2
Computación Evolutiva (EC)
Rethinking Evolutionary Computation
  • Método de computacional inspirado en el concepto
    Darwiniano de evolución por selección natural.
  • Es como crianza de caballos de raza uno
    determina quien es el mejor y dirige y controla
    la evolución
  • Computadoras hacen posible evolucionar
    estructuras muy rápido horas o días
  • Las estructuras que se crian o evolucionan son
  • Vectores (para optimización)
  • Programas de computadora (control)
  • Programas SPICE (circuitos)
  • Estructuras Geométricas (antenas)

3
Aplicaciones EC Circuitos
  • Koza GP
  • 21 reinvenciones
  • 2 nuevas patentes

More info http//www.genetic-programming.org/
4
Antenas
  • En el espacio 2004
  • NASA Ames Research Center
  • Hardware Evolutivo
  • Funciona, mejor que la que diseñaron grupo de
    expertos en nasa
  • No entienden completamente por que funciona

More info http//ic.arc.nasa.gov/projects/esg/res
earch/antenna.htm
5
Problema Complejidad
Introduction
  • Necesitamos herramientas para tratar la
    complejidad
  • Computación Evolutiva (CE) ha probado ser
    efectiva
  • CE afronta limitaciones debido a espacios de
    búsqueda muy grandes y muy complejos
  • Convergencia prematura a sub-optimas
  • Estancamiento de la búsqueda
  • Efectos negativos epistaticos (interferencia
    genética)
  • Destrucción de bloques de construcción genética
    muy largos, etc.
  • Problema de la complejidad superar limitaciones
    actuales para poder evolucionar estructuras mucho
    mas complejas

6
Aprendiendo de la Naturaleza
Introduction
  • Nature evolve strikingly complex organisms in
    response to complex environmental adaptation
    problems with apparent ease
  • Localize and extract principles from nature
  • Apply them to design better algorithms

Pictures credit Sanjeev Kumar
http//www.cs.ucl.ac.uk/staff/S.Kumar/
7
Representación es critica
Rethinking Evolutionary Computation
Genotype to Phenotype
Genome (DNA) Organisms Computational
Instance of Evolutionary Problem Structure
Solution Bit String Ordering of cities
for TSP 10 01 11 01 (Boston, NY, LA,
Orlando)
  • Representacion adecuadamente de el problema es
    crucial.
  • Define the space to be explored
  • Mapping between possible problem solutions and
    internal representation space

8
Estructuras de Información
Rethinking Evolutionary Computation
  • DNA molecule is an information structure
  • Store information digitally (chain of
    nucleotides)
  • Nucleotide deoxyribose sugar phosphate
    Nitrogenous base
  • Nitrogenous bases Adenine, Thymine, Cytosine,
    Guanine
  • DNA is an amazingly efficient, highly specialized
    structure for information storage, replication,
    expression and evolution

image credit U.S. Department of Energy Genomes
to Life Program, http//doegenomestolife.org.
9
Estructuras de Función
Rethinking Evolutionary Computation
  • Proteins
  • Most elementary building blocks of functionality
  • Assembled directly from segments of DNA
  • Self-assemble into a characteristic
    three-dimensional shape
  • Involved in almost every biological process
  • Ultimately responsible for all the organisms
    functionalities

image credit U.S. Department of Energy Genomes
to Life Program, http//doegenomestolife.org.
10
Del Genotype al Phenotype
Rethinking Evolutionary Computation
  • Classical Genetics linear relation
  • Gene ? Phene (visible trait)
  • Gene type (hair color gene) ? Phene type (hair
    color)
  • Modern Genetics non-linear relation
  • Sum (kigenei) cascade metabolic reactions
    (protein-protein, gene- protein, gene-mRNA, and
    others) Environment ? Phene

Genes
mRNA
Proteins
Metabolic Pathways
Visible Traits
Epigenetic Factors
11
Representaciones en la Naturaleza y en EC
Rethinking Evolutionary Computation
  • Nature
  • Complex genotype to phenotype mapping
  • Genes to proteins, proteins interact in complex
    ways to produce biological function and behavior
  • Functional structures proteins
  • EC
  • Usually direct genotype to phenotype
  • Each gene represents one characteristic of the
    problem (similar to have one gene for
    intelligence or tallness, clearly not the case)
  • No functional structures involved

12
Genomics y Proteomics
Proteomic Approach
  • Unique perspective
  • Study complete sets of functional building blocks
    that conform an organism (not single gene or
    protein)
  • Genomics focus on the study of organism genomes
    complete set of genes
  • Proteomics study of organisms proteomes protein
    complement of genome

13
Resultados Intrigantes
Proteomic Approach
  • Complexity not correlated with their genome
  • Rice genome contain more genes than human genome
    (Goff, 2002)
  • Humans and chimpanzees genomes are 98.7
    identical (Fujiyama, 2002)
  • Complexity may be correlated with their proteome

14
Representando como la Naturaleza(revisited
lifes complexity pyramid Barabási, 2002)
Proteomic Approach
  • Genomics and proteomics provide a better
    understanding at organism level

Emergent Complex function
Self-organization, interaction networks
Basic biological building blocks
15
Una nueva forma de representar
Proteomic Approach
S
Complex Solution Subject to fitness
evaluation (Organism)
Complexity Building Proteins cooperate, compete
and antagonize. Self-organization,
self-assembly (proteome)
Low complexity building blocks encode solution
subject to crossover, mutation, etc. (genome)
Proteins (Functional BBs)
Genes (Information BBs)
16
El Método Proteómico
Proteomic Approach
  • Introduce two fundamental departures from
    traditional EC
  • The focus of our work is the study of the effects
    of introducing such an interaction space into EC,
    as modeled by a multiset

1. Interaction Space
2. Functional Units
17
Resultados Publicadosen revistas arbitradas
  • Journal of Genetic Programming and Evolvable
    Hardware 3(2), pp. 157-192, Kluwer Academic
    Publishers Wu A.S., Garibay I., (2002), The
    Proportional Genetic Algorithm Gene Expression
    in a Genetic Algorithm
  • Introducimos el Algoritmo Genético Proporcional
    PGA
  • Análisis matemático y estadístico inicial de la
    representación PGA
  • Experimentalmente probamos que PGA es tan
    competente o mejor que el GA
  • Genoma bloques de construcción muy peculiares

18
Resultados Publicadosen revistas arbitradas
  • IEEE Transactions on Systems, Man and Cybernetics
    Part B 34(3), pp. 1423-1434, IEEE Press Wu A.S.,
    Garibay I., (2003), Intelligent Automated
    Control of Life Support Systems Using
    Proportional Representations
  • Aplicamos el PGA a un problema muy complejo
    sistema dinámico acoplado
  • NASA Sistema de Soporte de Vida para misiones
    largas en el espacio
  • Proteínas mejoran resultados de GA

19
Resultados Publicadosen revistas arbitradas
  • Journal of Genetic Programming and Evolvable
    Hardware, To Appear, Kluwer Academic Publishers
    Garibay I., Wu A.S., Garibay O.(2006), Emergence
    of Genomic Self-similarity in Location
    Independent Representations favoring positive
    correlation between the form and the quality of
    candidate solutions
  • Propiedad clave para el éxito de EC
  • Correlación positiva entre la forma y la calidad
    de las soluciones a prueba
  • Mostramos experimentalmente que genomas del
    Método Proteómico se auto-organizan en
    estructuras auto-similares
  • Probamos formalmente que el Método Proteómico
    favorece esta propiedad clave

20
Otros Resultados Publicadosen conferencias, etc.
  • Garibay I., Wu A.S., Garibay O., (2006),
    Emergence of Genomic Self-Similarity in Location
    Independent Representations Favoring Possitive
    Correlations Between the Form and Quality of
    Candidate Solutions, Genetic Programming and
    Evolvable Hardware Journal To Appear, Kluwer
    Academic Publishers.
  • Garibay I., Wu A.S., Garibay O. (2005), On
    Favoring Positive Correlations between Form and
    Quality of Candidate Solutions via the Emergence
    of Genomic Self-Similarity, In Proceedings of
    Genetic and Evolutionary Computation Conference -
    GECCO 2005, Washington, DC, USA, June 25-29, ACM
    Press. pp. 1177-1184. Nominated for Best Paper
    Award
  • Garibay I.(2004), The Proteomics Approach to
    Evolutionary Computation An Analysis of
    Proteome-based Location Independent
    Representations Based on the Proportional Genetic
    Algorithm short format official format ,
    Doctoral Dissertation, College of Engineering and
    Computer Science, University of Central Florida,
    Orlando, Florida, 2004.
  • Garibay I., Wu A.S. (2004), Emergence of Genomic
    Self-similarity in a Proteome-Based
    Representation, In Proceedings of the
    Self-Organization and Development in Artificial
    and Natural Systems (SODANS) 2004, Workshop and
    Tutorial Proceedings Ninth International
    Conference on the Simulation and Synthesis of
    Living Systems (ALIFE IX) Boston, Massachusetts,
    Sep 12 2004, pp. 9-12.
  • Garibay I.,Garibay O., Wu A.S. (2004), Effects
    of module encapsulation in repetitively modular
    genotypes on the search space, In Proceedings of
    Genetic and Evolutionary Computation Conference -
    GECCO 2004, Seattle, USA, Jun 26-30 . Vol. 1, pp.
    1125-1137
  • Garibay I., Wu A.S. (2004), Emergent white noise
    behavior in location independent
    representations, In Proceedings of the
    Self-organization in Representations for
    Evolutionary Algorithms Workshop - GECCO 2004,
    Seattle, USA, Jun 26-30 . Workshop Proceedings
    CD.
  • Garibay I., Wu A.S. (2004), Workshop on
    Self-Organization in Representations for
    Evolutionary Algorithms Building complexity from
    simplicity, In Proceedings of the
    Self-organization in Representations for
    Evolutionary Algorithms Workshop - GECCO 2004,
    Seattle, USA, Jun 26-30 . Workshop Proceedings
    CD.
  • Garibay 0.,Garibay I., Wu A.S. (2004), No Free
    Lunch for Module Encapsulation, In Proceedings
    of the Modularity, Regularity and Hierarchy in
    Open-ended Evolutionary Computation Workshop -
    GECCO 2004, Seattle, USA, Jun 26-30. Workshop
    Proceedings CD.
  • Wu A.S., Garibay I., (2003), Intelligent
    Automated Control of Life Support Systems Using
    Proportional Representations, IEEE Transactions
    on Systems, Man and Cybernetics Part B 34(3), pp.
    1423-1434, IEEE Press.
  • Garibay O.,Garibay I., Wu A.S. (2003), The
    modular genetic algorithm exploiting
    regularities in the problem space, In
    Proceedings of ISCIS 2003 The International
    Symposium on Computer and Information Systems at
    Antalya, TR, Nov 3-5 , LNCS series by
    Springer-Verlag, pp. 578-585.
  • Garibay O.,Garibay I., Wu A.S. (2003), The
    modular genetic algorithm motivation and first
    results on repetitive modularity, In Proceedings
    of Genetic and Evolutionary Computation
    Conference Late Breaking Papers - GECCO 2003,
    Chicago, USA, Jul 12-16 , pp. 100-107
  • Garibay I., Wu A.S. (2003), Cross-fertilization
    between Proteomics and Computational Synthesis,
    In proceedings of the 2003 AAAI Spring Symposium
    Series---Computational Synthesis at Stanford.
  • Wu A.S., Garibay I., (2002), The Proportional
    Genetic Algorithm Gene Expression in a Genetic
    Algorithm, Genetic Programming and Evolvable
    Hardware 3(2), pp. 157-192, Kluwer Academic
    Publishers.
  • Wu A.S., Garibay I., (2002), The Proportional
    Genetic Algorithm Representation, In Proceedings
    of Genetic and Evolutionary Computation
    Conference, GECCO 2002, p. 703, Morgan Kaufmann
    Publishers.
  • Wu A.S., Garibay I., (2002), The Proportional
    Genetic Algorithm, Proceedings of the Bird of a
    Feather Workshops, Genetic and Evolutionary
    Computation Conference, GECCO 2002, p. 200-205,
    AAAI.
  • Garibay I., (2000), Generating Text with a
    Theorem Prover, Proceedings of the 6th Applied
    Natural Language Processing and 1st Meeting of
    the North American Chapter of the Association of
    Computational Linguistics, Student Research
    Workshop, pp. 13-18.
Write a Comment
User Comments (0)
About PowerShow.com