On Empirical Mode Decomposition and its Algorithms - PowerPoint PPT Presentation

About This Presentation
Title:

On Empirical Mode Decomposition and its Algorithms

Description:

Title: Invariance d Echelle dans l Internet Author: Patrick Flandrin Last modified by: Patrick Flandrin Created Date: 4/10/2003 9:37:58 AM – PowerPoint PPT presentation

Number of Views:1068
Avg rating:3.0/5.0
Slides: 112
Provided by: PatrickF83
Category:

less

Transcript and Presenter's Notes

Title: On Empirical Mode Decomposition and its Algorithms


1
On Empirical Mode Decomposition and its
Algorithms
  • G. Rilling, P. Flandrin (Cnrs - Éns Lyon, France)
  • P. Gonçalvès (Inria Rhône-Alpes, France)

2
outline
  • Empirical Mode Decomposition (EMD) basics
  • examples
  • algorithmic issues
  • elements of performance evaluation
  • perspectives

3
basic idea
  •  multimodal signal fast oscillations on the
    top of slower oscillations 
  • Empirical Mode Decomposition (Huang)
  • identify locally the fastest oscillation
  • substract to the signal and iterate on the
    residual
  • data-driven method, locally adaptive and
    multiscale

4
Huangs algorithm
  • compute lower and upper envelopes from
    interpolations between extrema
  • substract mean envelope from signal
  • iterate until mean envelope 0 and extrema
    zero-crossings 1
  • substract the obtained Intrinsic Mode Function
    (IMF) from signal and iterate on residual

5
how EMD works
6
(No Transcript)
7
(No Transcript)
8
(No Transcript)
9
(No Transcript)
10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
(No Transcript)
14
(No Transcript)
15
(No Transcript)
16
(No Transcript)
17
(No Transcript)
18
(No Transcript)
19
(No Transcript)
20
(No Transcript)
21
(No Transcript)
22
(No Transcript)
23
(No Transcript)
24
(No Transcript)
25
(No Transcript)
26
(No Transcript)
27
(No Transcript)
28
(No Transcript)
29
(No Transcript)
30
(No Transcript)
31
(No Transcript)
32
(No Transcript)
33
(No Transcript)
34
(No Transcript)
35
(No Transcript)
36
(No Transcript)
37
(No Transcript)
38
(No Transcript)
39
(No Transcript)
40
(No Transcript)
41
(No Transcript)
42
(No Transcript)
43
(No Transcript)
44
(No Transcript)
45
(No Transcript)
46
(No Transcript)
47
(No Transcript)
48
(No Transcript)
49
(No Transcript)
50
(No Transcript)
51
(No Transcript)
52
(No Transcript)
53
(No Transcript)
54
(No Transcript)
55
(No Transcript)
56
(No Transcript)
57
(No Transcript)
58
(No Transcript)
59
(No Transcript)
60
(No Transcript)
61
(No Transcript)
62
(No Transcript)
63
(No Transcript)
64
(No Transcript)
65
(No Transcript)
66
(No Transcript)
67
(No Transcript)
68
(No Transcript)
69
(No Transcript)
70
(No Transcript)
71
(No Transcript)
72
(No Transcript)
73
(No Transcript)
74
(No Transcript)
75
(No Transcript)
76
(No Transcript)
77
(No Transcript)
78
(No Transcript)
79
(No Transcript)
80
(No Transcript)
81
(No Transcript)
82
EMD and AM-FM signals
  • quasi-monochromatic harmonic oscillations
  • self-adaptive time-variant filtering
  • example 2 sinus FM 1 Gaussian wave packet

83
EMD
84
time-frequency signature
85
time-frequency signature
86
time-frequency signature
87
time-frequency signature
88
nonlinear oscillations
  • IMF ? Fourier mode and, in nonlinear situations,
    1 IMF many Fourier modes
  • example 1 HF triangle 1 MF tone 1 LF
    triangle

89
EMD
90
issues
  • algorithm ?
  • intuitive but ad-hoc procedure, not unique
  • several user-controlled tunings
  • performance ?
  • difficult evaluation since no analytical
    definition
  • numerical simulations

91
algorithmic issues
  • interpolation
  • type ? cubic splines
  • border effects ? mirror symmetry
  • stopping criteria
  • mean zero ? 2 thresholds
  • variation 1  local EMD 
  • computational burden
  • about log2 N IMF s for N data points
  • variation 2  on-line EMD 

92
performance evaluation
  • extensive numerical simulations
  • deterministic framework
  • importance of sampling
  • ability to resolve multicomponent signals
  • a complement to stochastic studies
  • noisy signals fractional Gaussian noise
  • PF et al., IEEE Sig. Proc. Lett., to appear

93
EMD of fractional Gaussian noise
94
1. EMD and (tone) sampling
95
case 1 oversampling
96
equal height maxima
97
constant upper envelope
98
equal height minima
99
constant lower envelope
100
zero mean tone IMF
101
case 2 moderate sampling
102
fluctuating maxima
103
modulated upper envelope
104
fluctuating minima
105
modulated lower envelope
106
non zero mean tone ? IMF
107
experiment 1
  • 256 points tone, with 0 f 1/2
  • error normalized L2 distance comparing tone vs.
    IMF 1
  • minimum when 1/f even multiple of the sampling
    period

108
experiment 2
  • 256 points tones, with 0 f1 1/2 and f2 f1
  • error weighted normalized L2 distance comparing
    tone 1 vs. IMF 1, and tone 2 vs. maxIMF k, k
    2

109
experiment 3
  • intertwining of amplitude ratio, sampling rate
    and frequency spacing
  • dominant effect when f1 1/4 constant-Q
    (wavelet-like)  confusion band 

110
concluding remarks
  • EMD is an appealing data-driven and multiscale
    technique
  • spontaneous dyadic filterbank structure in
     stationary  situations, stochastic (fGn) or
    not (tones)
  • EMD defined as output of an algorithm
    theoretical framework beyond numerical
    simulations?

111
(p)reprints, Matlab codes and demoswww.ens-ly
on.fr/flandrin/emd.html
Write a Comment
User Comments (0)
About PowerShow.com