Title: Machine%20Translation:%20Challenges%20and%20Approaches
1Machine TranslationChallenges and Approaches
Invited LectureIntroduction to Natural Language
Processing Fall 2008
- Nizar HabashAssociate Research Scientist
- Center for Computational Learning Systems
- Columbia University
2- Currently, Google offers translations between the
following languages
Arabic Bulgarian Catalan Chinese Croatian Czech Danish Dutch Filipino Finnish French German Greek Hebrew Hindi Indonesian Italian Japanese Korean Latvian Lithuanian Norwegian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Ukrainian Vietnamese
3- Thank you for your attention!
- Questions?
4BBC found similar support!!!
5Road Map
- Multilingual Challenges for MT
- MT Approaches
- MT Evaluation
6Multilingual Challenges
- Orthographic Variations
- Ambiguous spelling
- ??? ??????? ?????? ?????? ????????? ????????
- Ambiguous word boundaries
-
- Lexical Ambiguity
- Bank ? ??? (financial) vs. ???(river)
- Eat ? essen (human) vs. fressen (animal)
7Multilingual Challenges Morphological Variations
- Affixation vs. RootPattern
write ? written ??? ? ?????
kill ? killed ??? ? ?????
do ? done ??? ? ?????
And the cars ? and the cars
????????? ? w Al SyArAt
Et les voitures ? et le voitures
8Translation Divergences conflation
am
???
suis
I
here
not
???
Je
ici
ne
pas
??? ??? I-am-not here
I am not here
Je ne suis pas ici I not am not here
9Translation Divergences head swap and categorial
English John swam across the river quickly
Spanish Juan cruzó rapidamente el río nadando Gloss John crossed fast the river swimming
Arabic ???? ??? ???? ????? ????? Gloss sped john crossing the-river swimming
Chinese ?? ?? ? ? ? ? ? ? Gloss John quickly (DE) swam cross the (Quantifier) river
Russian ???? ?????? ???????? ???? Gloss John quickly cross-swam river
10Road Map
- Multilingual Challenges for MT
- MT Approaches
- MT Evaluation
11MT ApproachesMT Pyramid
Source meaning
Target meaning
Source syntax
Target syntax
Source word
Target word
Analysis
Generation
12MT ApproachesGisting Example
Sobre la base de dichas experiencias se
estableció en 1988 una metodología.
Envelope her basis out speak experiences them
settle at 1988 one methodology.
On the basis of these experiences, a methodology
was arrived at in 1988.
13MT ApproachesMT Pyramid
Source meaning
Target meaning
Source syntax
Target syntax
Source word
Target word
Analysis
Generation
14MT ApproachesTransfer Example
- Transfer Lexicon
- Map SL structure to TL structure
poner
mod
subj
obj
?
subj
obj
mantequilla
en
X
obj
Y
X puso mantequilla en Y
X buttered Y
15MT ApproachesMT Pyramid
Source meaning
Target meaning
Source syntax
Target syntax
Source word
Target word
Analysis
Generation
16MT ApproachesInterlingua Example Lexical
Conceptual Structure
(Dorr, 1993)
17MT ApproachesMT Pyramid
Source meaning
Target meaning
Source syntax
Target syntax
Source word
Target word
Analysis
Generation
18MT ApproachesMT Pyramid
Source meaning
Target meaning
Source syntax
Target syntax
Source word
Target word
Analysis
Generation
19MT ApproachesStatistical vs. Rule-based
Source meaning
Target meaning
Source syntax
Target syntax
Source word
Target word
Analysis
Generation
20Statistical MT Noisy Channel Model
Portions from http//www.clsp.jhu.edu/ws03/prework
shop/lecture_yamada.pdf
21Statistical MT Automatic Word Alignment
Slide based on Kevin Knights http//www.sims.berk
eley.edu/courses/is290-2/f04/lectures/mt-lecture.p
pt
- GIZA
- A statistical machine translation toolkit used to
train word alignments. - Uses Expectation-Maximization with various
constraints to bootstrap alignments
Maria no dio una bofetada a la
bruja verde
Mary did not slap the green witch
22Statistical MT IBM Model (Word-based Model)
http//www.clsp.jhu.edu/ws03/preworkshop/lecture_y
amada.pdf
23Phrase-Based Statistical MT
Slide courtesy of Kevin Knight
http//www.sims.berkeley.edu/courses/is290-2/f04/l
ectures/mt-lecture.ppt
Morgen
fliege
ich
nach Kanada
zur Konferenz
Tomorrow
I
will fly
to the conference
In Canada
- Foreign input segmented in to phrases
- phrase is any sequence of words
- Each phrase is probabilistically translated into
English - P(to the conference zur Konferenz)
- P(into the meeting zur Konferenz)
- Phrases are probabilistically re-ordered
- See Koehn et al, 2003 for an intro.
- This is state-of-the-art!
24Word Alignment Induced Phrases
Slide courtesy of Kevin Knight
http//www.sims.berkeley.edu/courses/is290-2/f04/l
ectures/mt-lecture.ppt
Maria no dió una bofetada a
la bruja verde
Mary did not slap the green witch
(Maria, Mary) (no, did not) (slap, dió una
bofetada) (la, the) (bruja, witch) (verde, green)
25Word Alignment Induced Phrases
Slide courtesy of Kevin Knight
http//www.sims.berkeley.edu/courses/is290-2/f04/l
ectures/mt-lecture.ppt
Maria no dió una bofetada a
la bruja verde
Mary did not slap the green witch
(Maria, Mary) (no, did not) (slap, dió una
bofetada) (la, the) (bruja, witch) (verde,
green) (a la, the) (dió una bofetada a, slap the)
26Word Alignment Induced Phrases
Slide courtesy of Kevin Knight
http//www.sims.berkeley.edu/courses/is290-2/f04/l
ectures/mt-lecture.ppt
Maria no dió una bofetada a
la bruja verde
Mary did not slap the green witch
(Maria, Mary) (no, did not) (slap, dió una
bofetada) (la, the) (bruja, witch) (verde, green)
(a la, the) (dió una bofetada a, slap
the) (Maria no, Mary did not) (no dió una
bofetada, did not slap), (dió una bofetada a la,
slap the) (bruja verde, green witch)
27Word Alignment Induced Phrases
Slide courtesy of Kevin Knight
http//www.sims.berkeley.edu/courses/is290-2/f04/l
ectures/mt-lecture.ppt
Maria no dió una bofetada a
la bruja verde
Mary did not slap the green witch
(Maria, Mary) (no, did not) (slap, dió una
bofetada) (la, the) (bruja, witch) (verde, green)
(a la, the) (dió una bofetada a, slap
the) (Maria no, Mary did not) (no dió una
bofetada, did not slap), (dió una bofetada a la,
slap the) (bruja verde, green witch) (Maria no
dió una bofetada, Mary did not slap) (a la bruja
verde, the green witch)
28Word Alignment Induced Phrases
Slide courtesy of Kevin Knight
http//www.sims.berkeley.edu/courses/is290-2/f04/l
ectures/mt-lecture.ppt
Maria no dió una bofetada a
la bruja verde
Mary did not slap the green witch
(Maria, Mary) (no, did not) (slap, dió una
bofetada) (la, the) (bruja, witch) (verde, green)
(a la, the) (dió una bofetada a, slap
the) (Maria no, Mary did not) (no dió una
bofetada, did not slap), (dió una bofetada a la,
slap the) (bruja verde, green witch) (Maria no
dió una bofetada, Mary did not slap) (a la bruja
verde, the green witch) (Maria no dió una
bofetada a la bruja verde, Mary did not slap the
green witch)
29Advantages of Phrase-Based SMT
Slide courtesy of Kevin Knight
http//www.sims.berkeley.edu/courses/is290-2/f04/l
ectures/mt-lecture.ppt
- Many-to-many mappings can handle
non-compositional phrases - Local context is very useful for disambiguating
- Interest rate ?
- Interest in ?
- The more data, the longer the learned phrases
- Sometimes whole sentences
30MT ApproachesStatistical vs. Rule-based vs.
Hybrid
Source meaning
Target meaning
Source syntax
Target syntax
Source word
Target word
Analysis
Generation
31MT Approaches Practical Considerations
- Resources Availability
- Parsers and Generators
- Input/Output compatability
- Translation Lexicons
- Word-based vs. Transfer/Interlingua
- Parallel Corpora
- Domain of interest
- Bigger is better
- Time Availability
- Statistical training, resource building
32Road Map
- Multilingual Challenges for MT
- MT Approaches
- MT Evaluation
33MT Evaluation
- More art than science
- Wide range of Metrics/Techniques
- interface, , scalability, , faithfulness, ...
space/time complexity, etc. - Automatic vs. Human-based
- Dumb Machines vs. Slow Humans
34Human-based Evaluation ExampleAccuracy Criteria
35Human-based Evaluation ExampleFluency Criteria
36Automatic Evaluation ExampleBleu
Metric(Papineni et al 2001)
- Bleu
- BiLingual Evaluation Understudy
- Modified n-gram precision with length penalty
- Quick, inexpensive and language independent
- Correlates highly with human evaluation
- Bias against synonyms and inflectional variations
37Automatic Evaluation ExampleBleu Metric
- Test Sentence
- colorless green ideas sleep furiously
Gold Standard References all dull jade ideas
sleep irately drab emerald concepts sleep
furiously colorless immature thoughts nap angrily
38Automatic Evaluation ExampleBleu Metric
- Test Sentence
- colorless green ideas sleep furiously
Gold Standard References all dull jade ideas
sleep irately drab emerald concepts sleep
furiously colorless immature thoughts nap angrily
Unigram precision 4/5
39Automatic Evaluation ExampleBleu Metric
- Test Sentence
- colorless green ideas sleep furiously
- colorless green ideas sleep furiously
- colorless green ideas sleep furiously
- colorless green ideas sleep furiously
Gold Standard References all dull jade ideas
sleep irately drab emerald concepts sleep
furiously colorless immature thoughts nap angrily
Unigram precision 4 / 5 0.8 Bigram precision
2 / 4 0.5 Bleu Score (a1 a2 an)1/n
(0.8 ? 0.5)½ 0.6325 ? 63.25
40Automatic Evaluation ExampleMETEOR (Lavie and
Agrawal 2007)
- Metric for Evaluation of Translation with
Explicit word Ordering - Extended Matching between translation and
reference - Porter stems, wordNet synsets
- Unigram Precision, Recall, parameterized
F-measure - Reordering Penalty
- Parameters can be tuned to optimize correlation
with human judgments - Not biased against non-statistical MT systems
41Metrics MATR Workshop
- Workshop in AMTA conference 2008
- Association for Machine Translation in the
Americas - Evaluating evaluation metrics
- Compared 39 metrics
- 7 baselines and 32 new metrics
- Various measures of correlation with human
judgment - Different conditions text genre, source
language, number of references, etc.
42Automatic Evaluation ExampleSEPIA (Habash and
ElKholy 2008)
- A syntactically-aware evaluation metric
- (Liu and Gildea, 2005 Owczarzak et al., 2007
Giménez and Màrquez, 2007) - Uses dependency representation
- MICA parser (Nasr Rambow 2006)
- 77 of all structural bigrams are surface n-grams
of size 2,3,4 - Includes dependency surface span as a factor in
score - long-distance dependencies should receive a
greater weight than short distance dependencies - Higher degree of grammaticality?
43Interested in MT??
- Contact me (habash_at_cs.columbia.edu)
- Research courses, projects
- Languages of interest
- English, Arabic, Hebrew, Chinese, Urdu, Spanish,
Russian, . - Topics
- Statistical, Hybrid MT
- Phrase-based MT with linguistic extensions
- Component improvements or full-system
improvements - MT Evaluation
- Multilingual computing
44