Sulfur, manganese - PowerPoint PPT Presentation

1 / 23
About This Presentation
Title:

Sulfur, manganese

Description:

Sulfur, manganese in the Galaxy Mishenina T.V., Gorbaneva T.I., Paramonova O.P., Basak N.Yu., Kovtyukh V.V., Korotin S.A., Chekhonadskih F. + – PowerPoint PPT presentation

Number of Views:93
Avg rating:3.0/5.0
Slides: 24
Provided by: ite53
Category:
Tags: manganese | sulfur

less

Transcript and Presenter's Notes

Title: Sulfur, manganese


1
Sulfur, manganese in the Galaxy
Mishenina T.V., Gorbaneva T.I., Paramonova O.P.,
Basak N.Yu., Kovtyukh V.V., Korotin S.A.,
Chekhonadskih F. Odessa
Astronomical Observatory .
  • Preliminary plan
  • 2014-2016

Workshop "Heavy elements
nucleosynthesis and galactic chemical
evolution".
September 8
September 11, 2013 Moscow, Russia
2
Aims (sulfur)
  • Abundance of sulfur shows a larger scatter than
    other alpha-elements (Luck et al., 2011
    Lemasle et al. 2013). This is certainly due to
    the fact that sulfer abundances are based on
    typically 2-4 lines in IR region of spectra,
    which are subject to significant NLTE departures.
    It would be very important to reduce the scatter
    and to ascertain the sulfur abundances in
    Cepheids and dwarfs in the Galactic disc.
  • This would enable us a sulfur abundance gradient
    in the disk using Cepheids.
  • The distribution of sulfur in the disc
    dwarfs allows to trace the evolution of sulfur
    (to estimate the different sources of S
    production) at all ages of the disc stars.

3
Aims (manganese)
  • Manganese is an element of the iron peak
  • The behavior of Mn is inverse to that of
    alpha-elements (Wallerstein, 1962, Gratton 1989)
    and differs from that of iron group elements.
  • SN II and SN Ia in different proportion as the
    main sources of Mn production.
  • The behavior of manganese in the thick and the
    thin disc of the Galaxy allows us to consider
    some sources of they production and to precise
    its contribution in manganese enrichment.

4
Preliminary results for Sulfur and Manganese
  • The spectra of stars were obtained with S/N about
    100-350 using the 1.93 m telescope at the
    Observatoire de Haute-Provence (OHP, France),
    equipped with the echelle-spectrograph s ELODIE
    (Barrane et al., 1996? a resolving power is R
    42 000) and SOPHIE (Perruchot et al., 2008), a
    resolving power is R 75 000).
  • The spectral processing was carried out using
    the processing codes (Katz et al., 1998
    Galazutdinov, 1992).
  • The parameters of the investigated stars were
    taken from our earlier studies ( e.g.Mishenina
    et al. 2013).

5
Sulfur abundance
  • The abundances of sulfur were obtained for 27
    dwarfs under the LTE approximations upon the
    synthetic spectrum method, taking into account
    the HFS and the oscillator strengths of lines by
    Korotin (2009).
  • The Kurucz model of atmospheres (Kurucz, 1993)
    and the new version of the STARSP code by
    Tsymbal (1996) were used. We used for the sulfur
    and iron abundance determination the lines in the
    visual region (of 6743-6762 ÅÅ).
  • The NLTE corrections for those lines did not
    exceed -0.1 dex (Korotin, 2009).

6
The observed and synthetic spectra fitting for
star HD108954
7
The model predictions by Timmes, WoosleyWeaver
(1995) and the data of other authors (our data
as asterisks, Clegg et al. 1981 as triangles,
Francois 1987, 1988 as squares and circles).
The production of all stable sulfur isotopes in
the massive-star models is sufficient to explain
the solar abundance (Timmes et al. 1995) ???
8
Sulfur for Cepheids
  • 250 Cepheids
  • VLT (ESO) McDonald (USA)
  • HFS NLTE approximation using a 65-level model
    of the SI atom (Korotin S., 2009)
  • (Visual IR)

9
Manganese
  • The observations from ELODIE and SOPHIE (1.93m,
    OHP, France) for 200 dwarfs of the thin and thick
    disk stars
  • HFS from (Prochaska et al., 2000)
  • LTE, the new version of the STARSP code by V.
    Tsymbal
  • Maximum NLTE correction about 0.1 dex for solar
    metallicity (Bergemann Gehren, 2007), the
    program DETAIL (Butler Giddings 1985), the
    model atom - 245 and 213 levels for Mn I and Mn
    II, respectively
  • 0.2-0.5 dex for low metallicity (-1 -- -2 dex)
    (Bergemann Gehren, 2008).

10
The observed and synthetic spectra fitting
11
Thin disk as magenta, thick disc as black
squares, Hercules stream - as green triangles
12
Comparison with the data of other authorsblack
circles (Reddy et al. 2006) triangles (Nissen
2011) open circles (Feltzing et al. 2007) and
asterisks (our data).
13
Timmes et al. (1995)
  • Inclusion of nucleosynthesis from Type Ia
    supernovae improves the fit to the solar
    abundance of Mn.???

14
Trend of Mn/Fe vs. Fe/H
  • Different assumptions are invoked to explain the
    trends
  • 1)a Mn overproduction with respect to Fe in
    supernovae of type Ia (Prochaska McWilliam
    2000 Nissen et al. 2000 Sobeck et al. 2006)
  • 2) metallicity dependent yields from type II
    supernovae (McWilliam et al. 2003)
  • New Mn nucleosynthesis results and new models
    of the chemical evolution!
  • .

15
Detailed analysis of four stars with different
metallicity
  • Spectrograph SOPHIE (http//www.obs-hp.fr/www/gui
    de/sophie/sophie-info.html
  • R75000, ?? 3872-6943 Å Å
  • Now, we have redefined the parameters and focused
    our attention on the lines of the elements
    produced in the process of neutron captures
  • WIDTH9 by Kurucz R.
  • LTE approximation, EWs
  • FeI, FeII, YII, ZrI, ZrII, LaII, CeII, PrII,
    NdII, SmII, GdII

16
Parameters of studied stars
HD V Sp   S/N Teff (K) log g ? (km s-1) Fe/H
6582 5.1 G5Vb Double or multiple star 321 5330 4.35 0.4 -0.86
19445 8.1 A4p Variable Star 102 5950 4.1 1.3 -1.99
84937 8.3 sdF5 High proper-motion Star 148 6200 3.8 1.6 -2.15
170153 3.6 F7V Double or multiple star 317 6160 4.0 0.9 -0.57
17
Selection of lines
ElEMENT Number of lines Number of lines
ElEMENT min max
Fe I 475 846
Fe II 51 83
Y II 11 23
Zr I 0 23
Zr II 9 19
La II 7 25
Ce II 5 57
Pr II 4 22
Nd II 11 73
Sm II 5 46
Gd II 1 12
Parameters of line from VALD (Piskunov et
al. 1995 Kupka et al. 1999), for Ce II also
from Lawler et al. (2009). Lawler J. E. et al.
2009, Astrophys. J. Suppl., 182, 51.
18
Element abundances
ElEMENT HD6582 HD6582 HD6582 HD6582 HD6582 HD19445 HD19445 HD19445 HD19445 HD19445 HD84937 HD84937 HD84937 HD84937 HD84937 HD170153 HD170153 HD170153 HD170153 HD170153
ElEMENT X/H ? N lg? X/Fe X/H ? N lg? X/Fe X/H ? N lg? X/Fe X/H ? N lg? X/Fe
Fe I -0.86 0.1 846 6.64 0 -1.99 0.11 539 5.51 0  -2.15 0.11 475 5.35 0  -0.57 0.1 802 6.93 0 
Fe II -0.87 0.07 63 6.63 -0.01 -2 0.13 55 5.5 -0.01  -2.14 0.11 51 5.36 0.01  -0.58 0.11 83 6.92 -0.01 
Y II -0.86 0.1 22 1.35 0 -2.07 0.1 11 0.14 -0.08 -2.2 0.1 12 0.01 -0.05 -0.66 0.11 23 1.55 -0.09
Zr I -0.75 0.06 23 1.83 0.11                     -0.56 0.13 5 2.02 0.01
Zr II -0.71 0.05 19 1.87 0.15 -1.76 0.13 10 0.82 0.23 -1.93 0.1 9 0.65 0.22 -0.52 0.11 18 2.06 0.05
La II -0.76 0.07 22 0.34 0.1 -1.8 0.09 8 -0.7 0.19 -1.9 0.07 7 -0.8 0.25 -0.5 0.08 25 0.6 0.07
Ce II -0.83 0.09 57 0.75 0.03 -1.58 0.06 10 0 0.41 -1.79 0.03 5 -0.21 0.36 -0.5 0.1 52 1.08 0.07
Pr II -0.72 0.08 22 0 0.14 -1.15 0.11 9 -0.43 0.84 -1.51 0.02 4 -0.79 0.64 -0.55 0.09 18 0.17 0.02
Nd II -0.76 0.09 72 0.66 0.1 -1.64 0.12 15 -0.22 0.35 -1.76 0.07 11 -0.34 0.39 -0.52 0.11 73 0.9 0.05
Sm II -0.65 0.06 46 0.31 0.21 -1.28 0.11 11 -0.32 0.71 -1.45 0.05 5 -0.49 0.7 -0.45 0.08 41 0.51 0.12
Gd II -0.62 0.07 12 0.45 0.24 -1.31 0 1 lt-0.24 0.68 -1.53 0.08 3 lt-0.46 0.62 -0.47 0.08 9 0.6 0.1
19
Behavior of the element abundances in the
atmospheres of the Sun and of investigated stars
20
Plan (2014)
  • Chekhonadskikh F., Korotin S.A, (Kovtyukh V.V.)
    Galactic abundance gradients from Cepheids
    NLTE abundance of Sulphur.
  •  Mishenina T.V., (Pignatari M., Gorbaneva T.I.)
    Determination of Mn abundances in the sample of
    thin and thick disk stars for study of the
    sources of Mn production and Mn Chemical
    evolution.
  • Chekhonadskikh F., (Kovtyukh V.V.) Abundances of
    double-mode Cepheids from high-resolution
    echelle spectroscopy.
  •  Korotin S.A. NLTE analysis of C, O, Na, Mg for
    60 F supergiants .
  • Andrievsky S.M., Korotin S.A, (Kovtyukh V.V.)
    Oxygen NLTE abundance distribution in the central
    part of the Galactic disc.
  • Yushchenko V. The most detailed elemental
    abundance pattern in RM 1-667-stars of SMC
    Analysis of radioactive elements (Th).
  • Mishenina T.V., (Basak N.Yu.) The detailed
    investigation of 10 stars as standard stars in
    the region of metallicity Fe/H from -0.8 to -3
    dex.
  •  

21
Plan (2015)
  • Chekhonadskikh F., Korotin S.A, (Kovtyukh V.V.)
    Galactic abundance gradients from Cepheids
    NLTE analyze of alpha-elements.
  • Mishenina T.V., (Paramonova O.P.) Determination
    of Sulfur abundances in the thin and thick disk
    stars for study the sources of its production
  • Chekhonadskikh F., (Kovtyukh V.V.) FGK
    Supergiants elemental abundances and their
    implementation for the stellar and galactic
    evolution.
  • Yushchenko V. Determination of the Th abundance
    in HD204543 by synthesis method.
  •  Mishenina T.V., Korotin S.A., (Kovtyukh V.V.)
    Enrichment with alpha- and neutron capture
    elements of open cluster stars.
  • Andrievsky S.M., Korotin S.A. Silicon abundance
    problem in B stars.

22
Plan (2016)
  • Chekhonadskikh F., (Kovtyukh V.V.) Galactic
    abundance gradients from FGK supergiants
    alpha-elements. 
  • Mishenina T., (Kovtyukh V.V., Usenko I.) Light
    and heavy elements in the stars of the Southern
    sky (thick disk).
  • Korotin S.A., Andrievsky S.M., (Kovtyukh V.V.)
    NLTE analysis of Ca for supergiants.
  • Yushchenko V. Investigation of Ba-type stars.
  •  Mishenina T.V., Korotin S.A., (Kovtyukh V.V.)
    Enrichment with alpha- and neutron capture
    elements of globular cluster stars.
  • Andrievsky S.M., Korotin S.A. Europium NLTE
    abundance distribution in Galactic disc.

23
  • Thank you!
Write a Comment
User Comments (0)
About PowerShow.com