Well Logging (???) - PowerPoint PPT Presentation

1 / 66
About This Presentation
Title:

Well Logging (???)

Description:

Well Logging ... (1.1 salt mud, 1.0 fresh mud, and 0.7 gas) where neutron-density porosity neutron ... – PowerPoint PPT presentation

Number of Views:415
Avg rating:3.0/5.0
Slides: 67
Provided by: Chih53
Category:
Tags: logging | neutron | well

less

Transcript and Presenter's Notes

Title: Well Logging (???)


1
Well Logging(???)
  • ?????????
  • ?????
  • 2008. 12. 08-15

2
?????????
  • ??(well logging)????????????,??????????????,??????
    ???,?????????????????????????????????
  • ????????????,??????????????????

3
N
M
A
?????????(A)??????(M?N)??????,??????????????
?????????????????????????????????????????
4
?????????
5
?????????
  • Schlumberger ???1912????????????????????????,?1927
    ????Pechelbronn ??????????????????????,???????(???
    ???),???????????????????????????????,??,??????????
    ??????
  • 1931????????????,????????????????,1943??????????,?
    ?????????

6
?????????
  • 1947???????????,?????????????????????????????,1950
    ??,??????????,????????????????
  • 1951??????????????????????,??????????????

7
?????????
  • 1951???????????????????,?????????????,????????????
    ????????,?1957???????????????,??1962??????????????
    ??
  • ???????,???1951?????????,??1960??????????,???1965?
    ??????????

8
?????????
  • ??????1966?????,???????????????,??1978??,?????????
    ???????????????????????
  • ??,?1988?,?????????(Measurement-While-Drilling,
    MWD)???,?????????????????,???????????,???????????

9
?????????
  • ???????????????,?????????,
  • ?????????(????????????)?
  • ????????????(?????),
  • ????????(???????)???????????(?????)?
  • ?????????????,?????????????????

10
?????????
  • ???????????????????,????????????,???,?????????????
    ???????????????
  • ????????,?????????????????????,???????????????????
    ???
  • ????????????????,?????????????????????????????????
    ?,???????????????????,?????????????,??????????????
    ?????????????

11
????
  • ????????????????????????
  • ????
  • ???????(SP Log)
  • ????(GR Log)
  • ????(Caliper Log)
  • ?????
  • ????
  • ??????
  • ????
  • ????
  • ??????
  • ???????
  • ???????

12
??????
  • ??????????,???????????????????????(???????????????
    ?????)?
  • ????????,?????????????????,????????????????????,??
    ????????????,?????????????????????????????????

13
???????
  • ?????????????????????????????????,?????????????,??
    ??????????????,??????????????????????????????,????
    ?????????????????

14
???????
  • ??????????????????????????????,??????????????,????
    ????????????????????
  • ???,????????(??)??????????????????????
  • ??????????,????????(???)????????????,?????,???????
    ??????????????,?????????????

15
???????
  • ???????????????SP ???,?SP ???
  • ????????,????????????,??????????,???????
  • ?????,?????????,?????????????????????,????????????
    ?,??,???????????????,??????????????,SP
    ????????(??????)???

16
???????
  • ??????????????????????????????????,???????????,???
    ?,??????????
  • ??????????????????(Rw) ?

17
SP Log
  • The SP log is recorded on the left hand track of
    the log and is used to
  • (1) detect permeable beds
  • (2) detect boundaries of permeable beds
  • (3) determine formation water resistivity (Rw),
    and
  • (4) determine the volume of shale in permeable
    beds (Vsh)

18
SP Log
  • The concept of static spontaneous potential (SSP)
    is important because SSP represents the maximum
    SP that a thick, shale-free, porous and permeable
    formation can have for a given ratio between
    Rmf/Rw.
  • The SP value that is measured in the borehole is
    influenced by bed thickness, bed resistivity,
    invasion, borehole diameter, shale content, and
    most important the ratio of Rmf/Rw.

19
SP Log
  • Bed thickness
  • As a formation thins (i.e. lt 10ft thick) the SP
    measured in the borehole will record an SP value
    less than SSP.
  • Bed resistivity
  • Higher resistivities reduce the deflection of the
    SP curves.
  • Borehole and invasion
  • Hilchie (1978) indicates that the effects of
    borehole diameter and invasion on the SP log are
    very small and, in general, can be ignored.
  • Shale content
  • The presence of shale in a permeable formation
    reduces the SP deflection.

20
????
  • ?????????????????,???????????,????????????????????
    ???????????
  • ??,??????????????????,(??K40)??,??????????????????
    ???????????
  • ???????????????????,?????????????????,????????????
    ????????(???)?

21
????
  • ????,???????,??????????????(???),???????????????,?
    ????????????????

22
Gamma Ray Logs
  • Gamma ray logs measure natural radioactivity in
    formations and because of this measurement, they
    can be used for identifying lithologies and for
    correlating zones. Shale- free sandstones and
    carbonates have low concentrations of radioactive
    material, and give low gamma ray readings.
  • As shale content increases, and gamma ray log
    response increases because of the concentration
    of radioactive material in shale. However, clean
    sandstone (i.e. low shale content) may also
    produce a high gamma ray response if the
    sandstone contains potassium feldspars (????),
    micas (??), glauconite (???????), or uranium
    -rich water (?????).

23
???????
  • ???????????,???????(????)??????????,??,???????????
    ??,????????????,????????????
  • ???????????????????????3??

24
????
  • ?????????(???????)?? 1???????????????,????,???????
    ???????,???????????????,???????????????????????,??
    ????????????????????????????????????????????,?????
    ,??????????????????,????????????????????,?????????
    ?????????

25
????
  • ???????????????????(???)??????????????????????????
    ,??????????(???????)?

where
sonic derived porosity
interval transit time of the matrix
interval transit time of formation
interval transit time of the fluid in the well
bore (fresh mud189 salt mud185)
compaction factor The compaction factor is
obtained from the following formula
26
??????
  • ???????????-????,????-????????????????,???????????
    ????,?????????????,????????????,??,???????????????
    ???????
  • ??????????,????????????????????????(????????),????
    ???????????????????????????,?????????,????????????
    ?????

27
??????
  • ??????????????????????(????????????)??,???????????
    ?????
  • ????????????(???????)???????(?????????2.65g/cm3)??
    ?????(????????????1.1g/cm3),??????????(???????)?

where fden density derived porosity ?ma
matrix density ?b formation bulk density ?f
fluid density (1.1 salt mud, 1.0 fresh mud, and
0.7 gas)
28
????
  • ????????????????????????,?????????????????????(???
    ??)???,??????,??????(?????????)???????2.5???,?????
    ?????????
  • ????,??????(?10,000??/?)???????????????,????,?????
    ????(?2??/?)?????,???????????(????????)???????????
    ???,??????????????????????????????????????,???,???
    ???????????????????????????,???????????????????(??
    ?????)?

29
???????????
  • ???????????????????????????????,?????????????1?
  • ??????,????????,???????????????????,??????????????
    ?(?????)???
  • ???????????????????,???????????????????(?????)????
  • ?????????????????????????,???????

30
where
neutron-density porosity
neutron porosity (limestone unit)
density porosity (limestone unit)
neutron-density porosity
where
neutron porosity (limestone unit)
density porosity (limestone unit)
31
???????????
  • ?????????????????,????????????????????????????,???
    ????????????????????????,????????????????????????
  • ???????????????????,??????????????????????????????
    ???????????,???????????????????????,??????????????
    ???????????

32
????????
  • ????????????????,?????????????????????????????,???
    ????,????????????????
  • ?????????????????(?????-??,ohm-meter),????????????
  • ?????????????????????????????????????,?????
  • ???????????????,??????????????????????????????????
    ????,?????????????????????

33
????????
  • ???,???????,???????3??
  • ??????????????????,?????????????????,???????????
    ???,???????????
  • ?????????,??????????????(????????????),???????????
    ????????,??3???????,???????????
  • ?????????????????,???????????3???????????????????
    ?????

34
Borehole Environment
35
Borehole Environment (cont.)
  • Hole Diameter (dh)
  • A wells borehole size is described by the
    outside diameter of the drill bit. The size of
    the borehole is measured by a caliper log(????).
  • Drilling Mud (Rm)
  • Today, most wells are drilled with rotary bits
    and use special mud as a circulating fluid.
  • Mudcake (Rmc)
  • As invasion occurs, many of the solid particles
    (i.e. clay minerals from the drilling mud) are
    trapped on the side of the borehole.

36
Borehole Environment (cont.)
  • Mud Filtrate (Rmf)
  • Fluid that filters into the formation during
    invasion.
  • Invaded Zone(???)
  • The zone which is invaded by mud filtrate is
    called the invaded zone. It consists of a flushed
    zone (Rxo) and a transition or annulus (Ri) zone.
  • Flushed zone (Rxo)
  • Occurs close to the borehole where the mud
    filtrate has almost completely flushed out a
    formations hydrocarbons and/or water (Rw).

37
Borehole Environment (cont.)
  • The transition or annulus zone (Ri)
  • A formations fluids and mud filtrate are mixed,
    occurs between the flushed (Rxo) zone and the
    uninvaded zone (Rt).
  • Flushed Zone (Rxo)
  • The flushed zone extends only a few inches from
    the well bore and is part of the invaded zone.
  • Uninvaded Zone (Rt)
  • The uninvaded zone is located beyond the invaded
    zone. Pores in the uninvaded zone are
    uncontaminated by mud filtrate instead, they are
    saturated with formation water (Rw), oil, or gas.

38
Borehole Environment (cont.)
  • Diameter of invasion (di and dj)
  • The depth of mud filtrate invasion into the
    invaded zone is referred.
  • Water saturation of uninvaded zone (Sw)
  • Water saturation of flushed zone (Sxo)

39
Invasion and Resistivity Profiles
  • Invasion and resistivity profiles are
    diagrammatic, theoretical, cross sectional views
    moving away from the borehole and into a
    formation.
  • They illustrate the horizontal distributions of
    the invaded and uninvaded zones and their
    corresponding relative resistivities.
  • There are three commonly recognized invasion
    profiles (1) step, (2) transition, and (3)
    annulus.

40
Step Profile
  • The step profile has a cylindrical geometry with
    an invasion diameter equal to dj.
  • Shallow reading, resistivity logging tools read
    the resistivity of the invaded zone (Ri), while
    deeper reading, resistivity logging tools read
    true resistivity of the uninvaded zone (Rt).

Ro resistivity of the zone with pores 100
filled with formation water (Rw). Also called wet
resistivity
41
Transition profile
  • The transient profile also has a cylindrical
    geometry with two invasion diameters di (flushed
    zone) and dj (transition zone).
  • It is probably a more realistic model for true
    borehole conditions than the step profile.
  • Three resistivity devices measure resistivities
    of the flushed, transition, and uninvaded zones
    Rxo, Ri, and Rt.

42
Annulus profile
  • An annulus profile is only sometimes recorded on
    a log because it rapidly dissipates in a well.
  • However, it is very important to a geologist
    because the profile can only occur in zones which
    bear hydrocarbons.
  • As the mud filtrate invades the
    hydrocarbon-bearing zone, hydrocarbons move out
    first. Next, formation water is pushed out in
    front of the mud filtrate forming an annulus
    (circular) ring at the edge of the invaded zone.

43
??????
  • ??????????????????,????????,??????????????????????
    ????,?????????16???????64????????????????,???????
    ??(??????????)????????????????????????????
  • ????????(??)?????,???????????????????,????????????
    ??????????????????,???????????????????????????(??)
    ?????,?????????????????

44
???????
  • ??????????????????????,??????????????????????3???,
    ??????????????????,??????????????????????????????(
    ??)?????,??????????????????,?????????????????????

45
???????
  • ??????????????????????????,???????????????,???????
    ??????????????(????????????),????????????,????????
    ??????????????????????????????????????????,???????
    ????????????????,??????????,????????????????,?????
    ???????,????????
  • ???,???????????,???????????????,?????????,????????
    ????????????????????????????,??????????????

46
Resistivity
  • Resistivity is the rock property on which the
    entire science of logging first developed.
  • Resistivity is the measurement of resistance the
    reciprocal of resistivity is conductivity.

47
Temperature of Formation
  • Formation temperature (Tf) is also important in
    log analysis because the resistivities of the
    drilling mud (Rm), the mud filtrate (Rmf), and
    the formation water (Rw) vary with temperature.
  • The temperature of a formation is determined by
    knowing
  • (1) formation depth
  • (2) bottom hole temperature (BHT)
  • (3) total depth of the well (TD)
  • (4) surface temperature.

48
Temperature of Formation (cont.)
  • The formation temperature is also calculated
    (Asquith, 1980) by using the linear regression
    equation

49
Temperature Gradient Calculation
  • Assume
  • y bottom hole temperature (BHT) 250 F
  • x total depth (TD) 15,000 ft
  • c surface temperature 70 F
  • Solve for m (i.e. slope or temperature
    gradient)

70 ?
TD 15000 ft
250 ?
50
Temperature Gradient Calculation (solution)
51
Formation Temperature Calculation
  • Assume
  • m temperature gradient 0.012 F /ft
  • x formation depth 8,000ft
  • c surface temperature 70 F
  • Calculate the formation temperature at 8,000
    ft

52
Formation Temperature Calculation (solution)
53
Resistivity Calculation
  • After s formations temperature is determined
    either by chart or by calculation, the
    resistivities of the different fluids (Rm, Rmf,
    or Rw) can be corrected to formation temperature.
  • Figure 9 is a chart that is used for correcting
    fluid resistivities to formation temperature.
    This chart is closely approximated by the Arps
    formula

54
Fig. 8
55
Fig. 9
56
Resistivity Calculation
  • Using a formation temperature of 166 F and
    assuming an Rw of 0.04 measured at 70 F, the Rw
    at 166 F will be
  • Resistivity values of the drilling mud (Rm), mud
    filtrate (Rmf), mudcake (Rmc), and the
    temperatures at which they are measured, are
    recorded on a logs header.

57
Resistivity Calculation (solution)
58
Log Header (??)
Note sometimes, as in this example, a value for
the Rmc is not recorded on the header.
59
Exercise 1
  • Given
  • Surface temperature 80 F
  • Bottom hole temperature (BHT) 180 F
  • Total depth (TD) 10,000 ft
  • Formation depth 6,000 ft
  • Calculate the formation temperature at 6000 ft

60
Exercise 1 (solution)
61
Exercise 2
  • Given
  • Resistivity of drilling mud (Rm) equals 1.2 at 75
    F
  • Formation temperature (Tf) 160 F
  • Calculate the resistivity at formation
    temperature (160 F)

62
Exercise 2 (solution)
63
?????????
  • ??????????????,???????????,?????????,???????,????(
    ??)?????????,?????????????
  • ??????,???????????????????????????????????????????
    ????????????,??????????????

64
?????????
  • ??,????????????(????)??,?????????????????(?????)?,
    ????????????????????(???)?,???????????????,??????
    ?????????????,??????????????????????,?????????????
    ?

65
??????
  • ??????????????????,???????????????????????????????
    ?????????,?????????????????????????
  • ??????????????????????,???????????????????????,???
    ??????????,???????????????????????????????????????
    ???????????,????????????????????

66
??????
  • ?????????????,?????????????????????,??????(?????)?
    ????,?????,????????????????????,??????????????,???
    ??????????
  • ????????????,???????????????????,?????????????????
    ??????
Write a Comment
User Comments (0)
About PowerShow.com