A statistical model for hot hadronic matter - PowerPoint PPT Presentation

1 / 39
About This Presentation
Title:

A statistical model for hot hadronic matter

Description:

A statistical model for hot hadronic matter Matthias Hempel, and J rgen Schaffner-Bielich Institut f r Theoretische Physik J. W. Goethe-Universit t, Frankfurt – PowerPoint PPT presentation

Number of Views:111
Avg rating:3.0/5.0
Slides: 40
Provided by: Matthi180
Category:

less

Transcript and Presenter's Notes

Title: A statistical model for hot hadronic matter


1

A statistical model for hot hadronic matter
Matthias Hempel, and Jürgen Schaffner-Bielich Institut für Theoretische Physik J. W. Goethe-Universität, Frankfurt 44th Karpacz Winter School of Theoretical Physics 27.02.2008

2

A statistical model for hot hadronic matter

Outline
Motivation Description of the model Results for n-free matter Results for trapped ns Summary outlook


3

Motivation
  • EoS and composition at finite T is of interest
    for Supernovae, cooling or accreting NS,
    collisions between compact stars, (heavy ion
    collisions)
  • at present only two models available (Shen
    Lattimer Swesty)
  • focus on matter below saturation density (crust)
    and construct a model that describes the
    liquid-gas phase transition with a
    grand-canonical statistical ensemble
  • sub-saturated matter important for e.g.
  • - SN dynamics (stall of the shock front)
  • - cooling of NS
  • directly accessible by heavy ion collisions in
    form of multifragmentation


Matthias Hempel Ladek Zdroj, February 27, 2008
4

Motivation
  • present models describe the system by one
    representative nucleus / the ground state of the
    simulated cell
  • ? no thermal or chemical ensemble
  • single nucleus approximation has little
    influence on the EoS but significant effect on
    the composition possible
  • composition form of matter (one component
    plasma ? statistical ensemble) influences e.g.
  • - neutrino scattering
  • - thermal conductivity


Burrows, A. Lattimer, J. M. 1984ApJ...285..294B

Matthias Hempel Ladek Zdroj, February 27, 2008
5

Hot Hadronic Matter Assumptions
  • nuclear statistical equilibrium (T 0.5 MeV)
  • full grand-canonical ensemble
  • n-free
  • charge neutrality ne np
  • b-equilibrium me mB - mp
  • matter described by (T, nB)
  • trapped ns
  • charge neutrality ne np
  • no b-equilibrium / finite n chemical potential
    me - mn mB - mp
  • described by (T, nB, Yp)


Matthias Hempel Ladek Zdroj, February 27, 2008
6

Hot Hadronic Matter Ingredients
  • nuclei (A 2)

T, nB, Yp
A3, Z3
a
A1, Z1
A2, Z2

Matthias Hempel Ladek Zdroj, February 27, 2008
7

Hot Hadronic Matter Ingredients
  • nuclei (A 2)
  • nucleons

T, nB, Yp
A3, Z3
p
a
n
n
A1, Z1
A2, Z2
n

Matthias Hempel Ladek Zdroj, February 27, 2008
8

Hot Hadronic Matter Ingredients
  • nuclei (A 2)
  • nucleons
  • electrons positrons

T, nB, Yp
A3, Z3
p
a
n
n
e-
e
A1, Z1
A2, Z2
n

Matthias Hempel Ladek Zdroj, February 27, 2008
9

Hot Hadronic Matter Ingredients
  • nuclei (A 2)
  • nucleons
  • electrons positrons
  • photons

T, nB, Yp
A3, Z3
p
g
a
n
n
e-
e
A1, Z1
A2, Z2
n

Matthias Hempel Ladek Zdroj, February 27, 2008
10

Hot Hadronic Matter Ingredients
  • nuclei (A 2)
  • nucleons
  • electrons positrons
  • photons


Matthias Hempel Ladek Zdroj, February 27, 2008
11

Nuclei
  • if available experimental data of Audi, Wapstra
    and Thibault (2003) binding energies of over
    2000 precisely measured nuclei

? direct use of experimental data for the
construction of the EoS

Matthias Hempel Ladek Zdroj, February 27, 2008
12

Nuclei
  • experimentally unknown nuclei mass table
    generated with theoretical nuclear model


Matthias Hempel Ladek Zdroj, February 27, 2008
13

Nuclei Theoretical Nuclear Model
  • standard relativistic mean-field description
  • parameter-set TMA with mass number-dependent
    coupling constants
  • BCS d-force pairing
  • axial deformations
  • srms(AW)2.1 MeV
  • but neglect of temperature and medium effects


Geng, L. Toki, H. Meng, J. 2005PThPh.113..785G

Matthias Hempel Ladek Zdroj, February 27, 2008
14

Nuclei Thermodynamics
  • Maxwell-Boltzmann gas for every nucleus (Ai,Zi)
  • classical, non-relativistic Boltzmann
    description always adequate
  • chemical potential
  • number density
  • empirical formula for level density


Fai, G. Randrup, J. 1982NuclPhysA.381..557
Matthias Hempel Ladek Zdroj, February 27, 2008
15

Nuclei Coulomb Energies
  • Wigner-Seitz approximation
  • included as corrections to the nuclear masses

Ri
  • only valid if Ggtgt1
  • but if Gltlt1 ? ideal gas limit
  • achieved

Ai, Zi
e-
e
RWS

Matthias Hempel Ladek Zdroj, February 27, 2008
16

Nucleons
  • free Fermi-gas at finite T (high accurate
    Fermi-Dirac integration routine)
  • same relativistic mean-field description as for
    nuclei (at finite T)
  • nuclear matter properties


Gong, Z. et al. 2001CoPhC.136..294G
Matthias Hempel Ladek Zdroj, February 27, 2008
17

Thermodynamics
  • finite size of baryons ? excluded volume
    principle
  • e, P, s corrected in the same manner
  • thermodynamic inconsistent due to neglect of
    derivative terms


Kouno, H. Takagi, F. 1989ZPhysC.45..43
Matthias Hempel Ladek Zdroj, February 27, 2008
18

Results n-free Composition
  • mass fractions
  • nB(ND) 2x10-4 fm-³
  • nB0(ND) 2.7x10-4 fm-³

neutron drip

Matthias Hempel Ladek Zdroj, February 27, 2008
19

Results n-free Composition
  • average mass number ltAgt and standard deviation s
  • full T0 calculations with explicit lattice
    energy reproduced (smoothed)
  • unexpected decreasing ltAgt at large density
    (limited mass table)
  • spread at transition points


Rüster, S. B. H. M. Schaffner-Bielich, J.
2006PhRvC..73c5804R
Matthias Hempel Ladek Zdroj, February 27, 2008
20

Results n-free Composition
  • nuclide distribution (mass fractions)
  • smeared out transition from nucleus 66Ni to 86Kr
  • can not be reproduced by one representative
    nucleus


Matthias Hempel Ladek Zdroj, February 27, 2008
21

Results n-free Composition
  • nuclide distribution
  • temperature effects decrease
  • neutrons begin to appear


Matthias Hempel Ladek Zdroj, February 27, 2008
22

Results n-free Composition
  • mass fractions


Matthias Hempel Ladek Zdroj, February 27, 2008
23

Results n-free Composition
  • mass fractions
  • nuclei dissolve into a, p n at low density


Matthias Hempel Ladek Zdroj, February 27, 2008
24

Results n-free Composition
  • nuclide distribution
  • T0 path still observable
  • thermal energy larger than differences in the
    chemical potentials of different nuclei ? broad
    distribution


Matthias Hempel Ladek Zdroj, February 27, 2008
25

Results n-free Composition
  • nuclide distribution
  • transition from neutron magic number 50 to 82
  • ? broad distribution with two maxima


Matthias Hempel Ladek Zdroj, February 27, 2008
26

Results n-free EoS
  • T0 case reproduced
  • ? important benchmark up to nB 10-4 fm-3
  • softening above ND due to free n
  • P and r at small densities and large T generated
    by the electron positron plasma


Matthias Hempel Ladek Zdroj, February 27, 2008
27

Results trapped ns EoS
  • good agreement
  • 1st order phase transition due to limited mass
    table (?)


Lattimer, J. Swesty, F. 1991NuclPhysA.535..331
Matthias Hempel Ladek Zdroj, February 27, 2008
28

Results trapped ns EoS
  • good agreement for low T, but bumps from shell
    effects
  • differences at large T


Shen, H. et al. 1998NuPhA.637..435S
Matthias Hempel Ladek Zdroj, February 27, 2008
29

Results trapped ns Composition
  • average mass number ltAgt
  • strong shell effects
  • huge differences at large densities


Matthias Hempel Ladek Zdroj, February 27, 2008
30

Results trapped ns Composition
  • mass fractions
  • nuclei and as only at largest densities


Matthias Hempel Ladek Zdroj, February 27, 2008
31

Results trapped ns Composition
  • average neutron number ltNgt
  • Neutrino cross-sections / ltN²gt


Matthias Hempel Ladek Zdroj, February 27, 2008
32

Results trapped ns Composition
  • average of squared neutron number ltN²gt
  • Neutrino cross-sections / ltN²gt
  • big effect coming only from the distribution


Matthias Hempel Ladek Zdroj, February 27, 2008
33

Results trapped ns Composition
  • nuclide distribution


Matthias Hempel Ladek Zdroj, February 27, 2008
34

Results trapped ns Composition
  • nuclide distribution
  • almost all nuclei of the nuclear chart populated


Matthias Hempel Ladek Zdroj, February 27, 2008
35

Results trapped ns Composition
  • nuclide distribution
  • almost all nuclei of the nuclear chart populated
  • importance of statistical treatment


Matthias Hempel Ladek Zdroj, February 27, 2008
36

Summary
  • Statistical model for the EoS and composition at
    finite T
  • grand canonical ensemble consisting of an ideal
    gas of nuclei (vacuum masses at T0) and nucleons
    (RMF)
  • empirical formula for level densities
  • Coulomb energies included in Wigner-Seitz
    approximation as effective masses
  • excluded volume corrections for baryons
  • Results
  • T0 results reproduced
  • consistent with existing EoSs, 1st order phase
    transition
  • big differences in the composition, shell
    effects


Matthias Hempel Ladek Zdroj, February 27, 2008
37

Outlook
  • extension of nuclear mass table
  • investigate nuclear level density / temperature
    dependence of BE
  • investigate role of the excluded volume
    corrections
  • investigate Coulomb energies
  • inclusion of medium effects on the nuclear
    binding energies


Matthias Hempel Ladek Zdroj, February 27, 2008
38

Outlook Density Dependence of BE
  • full RMF calculation with fixed external neutron
    density by Thomas Bürvenich (Frankfurt, FIAS)
  • simple quadratic behaviour (?)
  • extension of the Bethe-Weizsäcker mass formula

preliminary

Matthias Hempel Ladek Zdroj, February 27, 2008
39

Outlook
  • extension of nuclear mass table
  • investigate nuclear level density / temperature
    dependence of BE
  • investigate role of the excluded volume
    corrections
  • investigate Coulomb energies
  • inclusion of medium effects on the nuclear
    binding energies
  • study different theoretical nuclear models
    (other parameter sets mass tables, Skyrme-HF)
  • use more realistic low density homogenous
    nuclear matter EoS
  • ? generate a full (nB, Yp, T) EoS table


Matthias Hempel Ladek Zdroj, February 27, 2008
Write a Comment
User Comments (0)
About PowerShow.com