Halliday/Resnick/Walker Fundamentals of Physics - PowerPoint PPT Presentation

Loading...

PPT – Halliday/Resnick/Walker Fundamentals of Physics PowerPoint presentation | free to download - id: 70648f-ZDk1N



Loading


The Adobe Flash plugin is needed to view this content

Get the plugin now

View by Category
About This Presentation
Title:

Halliday/Resnick/Walker Fundamentals of Physics

Description:

Title: PowerPoint Presentation Author: gosnato Last modified by: Scott Hildreth Created Date: 10/25/2006 3:39:08 PM Document presentation format: On-screen Show (4:3) – PowerPoint PPT presentation

Number of Views:16
Avg rating:3.0/5.0
Slides: 76
Provided by: gos95
Category:

less

Write a Comment
User Comments (0)
Transcript and Presenter's Notes

Title: Halliday/Resnick/Walker Fundamentals of Physics


1
Halliday/Resnick/Walker Fundamentals of Physics
  • Classroom Response System Questions

Chapter 5 Forces and Motion
Interactive Lecture Questions
2
5.3.1. A pipe is bent into the shape shown and
oriented so that it is sitting horizontally on a
table top. You are looking at the pipe from
above. The interior of the pipe is smooth. A
marble is shot into one end and exits the other
end. Which one of the paths shown in the drawing
will the marble follow when it leaves the
pipe? a) 1 b) 2 c) 3 d) 4 e) 5
3
5.3.1. A pipe is bent into the shape shown and
oriented so that it is sitting horizontally on a
table top. You are looking at the pipe from
above. The interior of the pipe is smooth. A
marble is shot into one end and exits the other
end. Which one of the paths shown in the drawing
will the marble follow when it leaves the
pipe? a) 1 b) 2 c) 3 d) 4 e) 5
4
5.3.2. If an object is moving can you conclude
there are forces acting on it? If an object is
at rest, can you conclude there are no forces
acting on it? Consider each of the following
situations. In which one of the following cases,
if any, are there no forces acting on the
object? a) A bolt that came loose from a
satellite orbits the earth at a constant
speed. b) After a gust of wind has blown
through a tree, an apple falls to the ground. c)
A man rests by leaning against a tall building
in downtown Dallas. d) Sometime after her
parachute opened, the sky diver fell toward the
ground at a constant velocity. e) Forces are
acting on all of the objects in choices a, b, c,
and d.
5
5.3.2. If an object is moving can you conclude
there are forces acting on it? If an object is
at rest, can you conclude there are no forces
acting on it? Consider each of the following
situations. In which one of the following cases,
if any, are there no forces acting on the
object? a) A bolt that came loose from a
satellite orbits the earth at a constant
speed. b) After a gust of wind has blown
through a tree, an apple falls to the ground. c)
A man rests by leaning against a tall building
in downtown Dallas. d) Sometime after her
parachute opened, the sky diver fell toward the
ground at a constant velocity. e) Forces are
acting on all of the objects in choices a, b, c,
and d.
6
5.3.3. A child is driving a bumper car at an
amusement park. During one interval of the ride,
she is traveling at the cars maximum speed when
she crashes into a bumper attached to one of the
side walls. During the collision, her glasses
fly forward from her face. Which of the
following statements best describes why the
glasses flew from her face? a) The glasses
continued moving forward because there was too
little force acting on them to hold them on her
face during the collision. b) During the
collision, the girls face pushed the glasses
forward. c) The glasses continued moving
forward because the force of the air on them was
less than the force of the girls face on
them. d) During the collision, the car pushed
the girl forward causing her glasses to fly off
her face. e) During the collision, the wall
pushed the car backward and the girl reacted by
pushing her glasses forward.
7
5.3.3. A child is driving a bumper car at an
amusement park. During one interval of the ride,
she is traveling at the cars maximum speed when
she crashes into a bumper attached to one of the
side walls. During the collision, her glasses
fly forward from her face. Which of the
following statements best describes why the
glasses flew from her face? a) The glasses
continued moving forward because there was too
little force acting on them to hold them on her
face during the collision. b) During the
collision, the girls face pushed the glasses
forward. c) The glasses continued moving
forward because the force of the air on them was
less than the force of the girls face on
them. d) During the collision, the car pushed
the girl forward causing her glasses to fly off
her face. e) During the collision, the wall
pushed the car backward and the girl reacted by
pushing her glasses forward.
8
5.3.4. A circus clown is riding a very tall
unicycle in a straight line along a flat,
horizontal surface. While she is riding, she is
also juggling a set of balls in a vertical
circle. As one of the balls reaches her hand, it
slips and falls to the floor. Which one of the
following locations best describes where the ball
strikes the floor? a) far in front of the
clown b) just ahead of the clown c) directly
below the clown d) just behind the clown e)
far behind the clown
9
5.3.4. A circus clown is riding a very tall
unicycle in a straight line along a flat,
horizontal surface. While she is riding, she is
also juggling a set of balls in a vertical
circle. As one of the balls reaches her hand, it
slips and falls to the floor. Which one of the
following locations best describes where the ball
strikes the floor? a) far in front of the
clown b) just ahead of the clown c) directly
below the clown d) just behind the clown e)
far behind the clown
10
5.3.5. A circus clown is riding a very tall
unicycle in a straight line along a flat,
horizontal surface. While she is riding, she is
also juggling a set of balls in a vertical
circle. At one point, she throws a ball
vertically upward, but fails to catch it when it
comes back down. Which one of the following
locations best describes where the ball strikes
the floor? a) far in front of the clown b)
just ahead of the clown c) directly below the
clown d) just behind the clown e) far behind
the clown
11
5.3.5. A circus clown is riding a very tall
unicycle in a straight line along a flat,
horizontal surface. While she is riding, she is
also juggling a set of balls in a vertical
circle. At one point, she throws a ball
vertically upward, but fails to catch it when it
comes back down. Which one of the following
locations best describes where the ball strikes
the floor? a) far in front of the clown b)
just ahead of the clown c) directly below the
clown d) just behind the clown e) far behind
the clown
12
5.6.1. A car of mass m is moving at a speed 3v in
the left lane on a highway. In the right lane, a
truck of mass 3m is moving at a speed v. As the
car is passing the truck, the driver notices that
the traffic light ahead has turned yellow. Both
drivers apply the brakes to stop ahead. What is
the ratio of the force required to stop the truck
to that required to stop the car? Assume each
vehicle stops with a constant deceleration and
stops in the same distance x. a) 1/9 b)
1/3 c) 1 d) 3 e) 9
13
5.6.1. A car of mass m is moving at a speed 3v in
the left lane on a highway. In the right lane, a
truck of mass 3m is moving at a speed v. As the
car is passing the truck, the driver notices that
the traffic light ahead has turned yellow. Both
drivers apply the brakes to stop ahead. What is
the ratio of the force required to stop the truck
to that required to stop the car? Assume each
vehicle stops with a constant deceleration and
stops in the same distance x. a) 1/9 b)
1/3 c) 1 d) 3 e) 9
14
5.6.2. A car is driving due south through a
parking lot and its speed is monitored. Prepare
a graph of the cars speed versus time using the
following data Segment A the car begins at
rest and uniformly accelerates to 5 m/s in an
elapsed time of 2 s. Segment B for the next 10
seconds, the car moves at a constant speed of 5
m/s. Segment C during the next 2 seconds, the
car uniformly slows to 3 m/s. Segment D for the
next 4 seconds, the car travels at a constant
speed of 3 m/s. Using your graph, determine which
one of the following statements is false. a)
Net forces act on the car during intervals A and
C. b) No net force acts on the car during
interval B. c) Opposing forces may be acting on
the car during interval C. d) The magnitude of
the net force acting during interval A is less
than that during C. e) Opposing forces may be
acting on the car during interval B.
15
5.6.2. A car is driving due south through a
parking lot and its speed is monitored. Prepare
a graph of the cars speed versus time using the
following data Segment A the car begins at
rest and uniformly accelerates to 5 m/s in an
elapsed time of 2 s. Segment B for the next 10
seconds, the car moves at a constant speed of 5
m/s. Segment C during the next 2 seconds, the
car uniformly slows to 3 m/s. Segment D for the
next 4 seconds, the car travels at a constant
speed of 3 m/s. Using your graph, determine which
one of the following statements is false. a)
Net forces act on the car during intervals A and
C. b) No net force acts on the car during
interval B. c) Opposing forces may be acting on
the car during interval C. d) The magnitude of
the net force acting during interval A is less
than that during C. e) Opposing forces may be
acting on the car during interval B.
16
5.6.3 The graph shows the velocities of two
objects as a function of time. During the
intervals A, B, and C indicated, net forces
, , and act on the two
objects, respectively. If the objects have equal
mass, which one of the following choices is the
correct relationship between the magnitudes of
the three net forces? a) FA gt FB FC b) FC gt
FA gt FB c) FA lt FB lt FC d) FA FB FC e)
FA FC gt FB
17
5.6.3 The graph shows the velocities of two
objects as a function of time. During the
intervals A, B, and C indicated, net forces
, , and act on the two
objects, respectively. If the objects have equal
mass, which one of the following choices is the
correct relationship between the magnitudes of
the three net forces? a) FA gt FB FC b) FC gt
FA gt FB c) FA lt FB lt FC d) FA FB FC e)
FA FC gt FB
18
5.6.4. The drawing shows a steel ball flying at
constant velocity from point A to point B in a
region of space where the effects of gravity are
negligible. During the short time that passes as
the ball flies past point B, a magnet exerts a
force on it in the direction of the magnet.
Which of the following trajectories does the ball
follow beyond point B? a) 1 b) 2 c) 3 d)
4 e) 5
19
5.6.4. The drawing shows a steel ball flying at
constant velocity from point A to point B in a
region of space where the effects of gravity are
negligible. During the short time that passes as
the ball flies past point B, a magnet exerts a
force on it in the direction of the magnet.
Which of the following trajectories does the ball
follow beyond point B? a) 1 b) 2 c) 3 d)
4 e) 5
20
5.6.5. A 912-kg car is being driven down a
straight, level road at a constant speed of 31.5
m/s. When the driver sees a police cruiser
ahead, she removes her foot from the accelerator.
After 8.00 s, the speed of the car is 24.6 m/s,
which is the posted speed limit. What is the
magnitude of the average net force acting on the
car during the 8.00 s interval? a) 55.2 N b)
445 N c) 629 N d) 787 N e) 864 N
21
5.6.5. A 912-kg car is being driven down a
straight, level road at a constant speed of 31.5
m/s. When the driver sees a police cruiser
ahead, she removes her foot from the accelerator.
After 8.00 s, the speed of the car is 24.6 m/s,
which is the posted speed limit. What is the
magnitude of the average net force acting on the
car during the 8.00 s interval? a) 55.2 N b)
445 N c) 629 N d) 787 N e) 864 N
22
5.6.6. An object is moving due south at a
constant velocity. Then, a net force directed
due west acts on the object for a short time
interval, after which, the net force on the
object is zero newtons. Which one of the
following statements concerning the object is
necessarily true? a) The final velocity of the
object will be directed south of west. b) The
final velocity of the object will be directed due
south. c) The direction of acceleration of the
object while the force was being applied was
south of west. d) The magnitude of the objects
acceleration while the force was being applied
was dependent on the objects initial
velocity. e) The change in the objects
velocity while the force was applied was directed
south of east.
23
5.6.6. An object is moving due south at a
constant velocity. Then, a net force directed
due west acts on the object for a short time
interval, after which, the net force on the
object is zero newtons. Which one of the
following statements concerning the object is
necessarily true? a) The final velocity of the
object will be directed south of west. b) The
final velocity of the object will be directed due
south. c) The direction of acceleration of the
object while the force was being applied was
south of west. d) The magnitude of the objects
acceleration while the force was being applied
was dependent on the objects initial
velocity. e) The change in the objects
velocity while the force was applied was directed
south of east.
24
5.7.1. A cannon fires a ball vertically upward
from the Earths surface. Which one of the
following statements concerning the net force
acting on the ball at the top of its trajectory
is correct? a) The net force on the ball is
instantaneously equal to zero newtons at the top
of the flight path. b) The direction of the net
force on the ball changes from upward to
downward. c) The net force on the ball is less
than the weight, but greater than zero
newtons. d) The net force on the ball is
greater than the weight of the ball. e) The net
force on the ball is equal to the weight of the
ball.
25
5.7.1. A cannon fires a ball vertically upward
from the Earths surface. Which one of the
following statements concerning the net force
acting on the ball at the top of its trajectory
is correct? a) The net force on the ball is
instantaneously equal to zero newtons at the top
of the flight path. b) The direction of the net
force on the ball changes from upward to
downward. c) The net force on the ball is less
than the weight, but greater than zero
newtons. d) The net force on the ball is
greater than the weight of the ball. e) The net
force on the ball is equal to the weight of the
ball.
26
5.7.2. If an object at the surface of the Earth
has a weight W, what would be the weight of the
object if it was transported to the surface of a
planet that is one-sixth the mass of Earth and
has a radius one third that of Earth? a) 3W b)
4W/3 c) W d) 3W/2 e) W/3
27
5.7.2. If an object at the surface of the Earth
has a weight W, what would be the weight of the
object if it was transported to the surface of a
planet that is one-sixth the mass of Earth and
has a radius one third that of Earth? a) 3W b)
4W/3 c) W d) 3W/2 e) W/3
28
5.7.3. Two objects that may be considered point
masses are initially separated by a distance d.
The separation distance is then decreased to d/3.
How does the gravitational force between these
two objects change as a result of the
decrease? a) The force will not change since it
is only dependent on the masses of the
objects. b) The force will be nine times larger
than the initial value. c) The force will be
three times larger than the initial value. d)
The force will be one third of the initial
value. e) The force will be one ninth of the
initial value.
29
5.7.3. Two objects that may be considered point
masses are initially separated by a distance d.
The separation distance is then decreased to d/3.
How does the gravitational force between these
two objects change as a result of the
decrease? a) The force will not change since it
is only dependent on the masses of the
objects. b) The force will be nine times larger
than the initial value. c) The force will be
three times larger than the initial value. d)
The force will be one third of the initial
value. e) The force will be one ninth of the
initial value.
30
5.7.4. Two satellites of masses m and 2m are at
opposite sides of the same circular orbit about
the Earth. Which one of the following statements
is true? a) The magnitude of the gravitational
force is greater for the satellite of mass 2m
than it is for the other satellite. b) The
magnitude of the gravitational force is the same
for both satellites and it is greater than zero
newtons. c) Since the satellites are moving at
a constant velocity, the gravitational force on
the satellites must be zero newtons. d) The
magnitude of the gravitational force is greater
for the satellite of mass m than it is for the
other satellite. e) The satellite of mass 2m
must move faster in the orbit than the other and
eventually they will be on the same side of the
Earth.
31
5.7.4. Two satellites of masses m and 2m are at
opposite sides of the same circular orbit about
the Earth. Which one of the following statements
is true? a) The magnitude of the gravitational
force is greater for the satellite of mass 2m
than it is for the other satellite. b) The
magnitude of the gravitational force is the same
for both satellites and it is greater than zero
newtons. c) Since the satellites are moving at
a constant velocity, the gravitational force on
the satellites must be zero newtons. d) The
magnitude of the gravitational force is greater
for the satellite of mass m than it is for the
other satellite. e) The satellite of mass 2m
must move faster in the orbit than the other and
eventually they will be on the same side of the
Earth.
32
5.7.5. An astronaut, whose mass on the surface of
the Earth is m, orbits the Earth in the space
shuttle at an altitude of 450 km. What is her
mass while orbiting in the space shuttle? a)
0.125m b) 0.25m c) 0.50m d) 0.75m e) m
33
5.7.5. An astronaut, whose mass on the surface of
the Earth is m, orbits the Earth in the space
shuttle at an altitude of 450 km. What is her
mass while orbiting in the space shuttle? a)
0.125m b) 0.25m c) 0.50m d) 0.75m e) m
34
5.7.6. A free-body diagram is shown for the
following situation a force pulls on a crate
of mass m on a rough surface. The diagram shows
the magnitudes and directions of the forces that
act on the crate in this situation.
represents the normal force on the crate,
represents the weight of the crate, and
represents the frictional force. Which one of
the following actions would result in an increase
in the normal force? a) P ? f / ? b) P ?
f c) P ? f ? mg d) mg e) zero
35
5.7.6. A free-body diagram is shown for the
following situation a force pulls on a crate
of mass m on a rough surface. The diagram shows
the magnitudes and directions of the forces that
act on the crate in this situation.
represents the normal force on the crate,
represents the weight of the crate, and
represents the frictional force. Which one of
the following actions would result in an increase
in the normal force? a) P ? f / ? b) P ?
f c) P ? f ? mg d) mg e) zero
36
5.7.7. A free-body diagram is shown for the
following situation a force pulls on a crate
that is sitting on a rough surface. The force
is directed at an angle ? above the horizontal
direction. The diagram shows the magnitudes and
directions of the forces that act on the crate in
this situation. represents the normal force
on the crate, represents the weight of the
crate, and represents the frictional force.
Which one of the following actions would result
in an increase in the normal force? a) Decrease
the angle ?. b) Increase the magnitude of
. c) Decrease the coefficient of friction. d)
Decrease the magnitude of . e) Increase the
coefficient of friction
37
5.7.7. A free-body diagram is shown for the
following situation a force pulls on a crate
that is sitting on a rough surface. The force
is directed at an angle ? above the horizontal
direction. The diagram shows the magnitudes and
directions of the forces that act on the crate in
this situation. represents the normal force
on the crate, represents the weight of the
crate, and represents the frictional force.
Which one of the following actions would result
in an increase in the normal force? a) Decrease
the angle ?. b) Increase the magnitude of
. c) Decrease the coefficient of friction. d)
Decrease the magnitude of . e) Increase the
coefficient of friction
38
5.7.8. Consider the three cases shown in the
drawing in which the same force is applied to a
box of mass M. In which case(s) will the
magnitude of the normal force on the box be equal
to (F sin ? Mg)? a) Case One only b)
Case Two only c) Case Three only d) Cases One
and Two only e) Cases Two and Three only
39
5.7.8. Consider the three cases shown in the
drawing in which the same force is applied to a
box of mass M. In which case(s) will the
magnitude of the normal force on the box be equal
to (F sin ? Mg)? a) Case One only b)
Case Two only c) Case Three only d) Cases One
and Two only e) Cases Two and Three only
40
5.7.9. Consider the situation shown in the
drawing. Block A has a mass 1.0 kg and block B
has a mass 3.0 kg. The two blocks are connected
by a very light rope of negligible mass that
passes over a pulley as shown. The coefficient
of kinetic friction for the blocks on the ramp is
0.33. The ramp is angled at ? 45?. At time t
0 s, block A is released with an initial speed
of 6.0 m/s. What is the tension in the rope? a)
11.8 N b) 7.88 N c) 15.8 N d) 13.6 N e)
9.80 N
41
5.7.9. Consider the situation shown in the
drawing. Block A has a mass 1.0 kg and block B
has a mass 3.0 kg. The two blocks are connected
by a very light rope of negligible mass that
passes over a pulley as shown. The coefficient
of kinetic friction for the blocks on the ramp is
0.33. The ramp is angled at ? 45?. At time t
0 s, block A is released with an initial speed
of 6.0 m/s. What is the tension in the rope? a)
11.8 N b) 7.88 N c) 15.8 N d) 13.6 N e)
9.80 N
42
5.7.10. During a baseball game, a boy throws a
ball from second base to first base. The initial
velocity of the ball is directed at an angle of
about 10? above the horizontal plane. Which one
of the following free-body diagrams best
represents the forces applied to the ball as it
is caught by the first baseman?
43
5.7.10. During a baseball game, a boy throws a
ball from second base to first base. The initial
velocity of the ball is directed at an angle of
about 10? above the horizontal plane. Which one
of the following free-body diagrams best
represents the forces applied to the ball as it
is caught by the first baseman?
44
5.7.11. Consider the three blocks shown in the
drawing. The masses of the blocks are given and
there are frictional forces acting at the
interface between the blocks and the horizontal
surface. A force is applied on block 1 as
shown. Complete the following statement The
net force acting on block 3 is a) zero
newtons b) less than F c) equal to F d)
greater than F
45
5.7.11. Consider the three blocks shown in the
drawing. The masses of the blocks are given and
there are frictional forces acting at the
interface between the blocks and the horizontal
surface. A force is applied on block 1 as
shown. Complete the following statement The
net force acting on block 3 is a) zero
newtons b) less than F c) equal to F d)
greater than F
46
5.7.12. Consider the three blocks shown in the
drawing. The masses of the blocks are given and
there are frictional forces acting at the
interface between the blocks and the horizontal
surface. A force is applied on block 1 as
shown. Complete the following statement The
magnitude of the friction force acting on block 3
is a) zero newtons b) less than F c) equal
to F d) greater than F
47
5.7.12. Consider the three blocks shown in the
drawing. The masses of the blocks are given and
there are frictional forces acting at the
interface between the blocks and the horizontal
surface. A force is applied on block 1 as
shown. Complete the following statement The
magnitude of the friction force acting on block 3
is a) zero newtons b) less than F c) equal
to F d) greater than F
48
5.8.1. A water skier is being pulled by a rope
attached to a speed boat moving at a constant
velocity. Consider the following four forces
(1) the force of the boat pulling the rope, (2)
the force of the skier pulling on the rope, (3)
the force of the boat pushing the water, and (4)
the force of the water pushing on the boat.
Which two forces are an action-reaction pair
that is consistent with Newtons third law of
motion? a) 1 and 2 b) 2 and 3 c) 2 and
4 d) 3 and 4 e) 1 and 4
49
5.8.1. A water skier is being pulled by a rope
attached to a speed boat moving at a constant
velocity. Consider the following four forces
(1) the force of the boat pulling the rope, (2)
the force of the skier pulling on the rope, (3)
the force of the boat pushing the water, and (4)
the force of the water pushing on the boat.
Which two forces are an action-reaction pair
that is consistent with Newtons third law of
motion? a) 1 and 2 b) 2 and 3 c) 2 and
4 d) 3 and 4 e) 1 and 4
50
5.8.2. A large crate is lifted vertically at
constant speed by a rope attached to a
helicopter. Consider the following four forces
that arise in this situation (1) the weight of
the helicopter, (2) the weight of the crate, (3)
the force of the crate pulling on the earth, and
(4) the force of the helicopter pulling on the
rope. Which one of the following relationships
concerning the forces or their magnitudes is
correct? a) The magnitude of force 4 is greater
than that of force 2. b) The magnitude of force
4 is greater than that of force 1. c) Forces 3
and 4 are equal in magnitude, but oppositely
directed. d) Forces 2 and 4 are equal in
magnitude, but oppositely directed. e) The
magnitude of force 1 is less than that of force 2.
51
5.8.2. A large crate is lifted vertically at
constant speed by a rope attached to a
helicopter. Consider the following four forces
that arise in this situation (1) the weight of
the helicopter, (2) the weight of the crate, (3)
the force of the crate pulling on the earth, and
(4) the force of the helicopter pulling on the
rope. Which one of the following relationships
concerning the forces or their magnitudes is
correct? a) The magnitude of force 4 is greater
than that of force 2. b) The magnitude of force
4 is greater than that of force 1. c) Forces 3
and 4 are equal in magnitude, but oppositely
directed. d) Forces 2 and 4 are equal in
magnitude, but oppositely directed. e) The
magnitude of force 1 is less than that of force 2.
52
5.8.3. An astronaut is on a spacewalk outside her
ship in gravity-free space. Initially, the
spacecraft and astronaut are at rest with respect
to each other. Then, the astronaut pushes to the
left on the spacecraft and the astronaut
accelerates to the right. Which one of the
following statements concerning this situation is
true? a) The astronaut stops moving after she
stops pushing on the spacecraft. b) The
velocity of the astronaut increases while she is
pushing on the spacecraft. c) The force exerted
on the astronaut is larger than the force exerted
on the spacecraft. d) The spacecraft does not
move, but the astronaut moves to the right with a
constant speed. e) The force exerted on the
spacecraft is larger than the force exerted on
the astronaut.
53
5.8.3. An astronaut is on a spacewalk outside her
ship in gravity-free space. Initially, the
spacecraft and astronaut are at rest with respect
to each other. Then, the astronaut pushes to the
left on the spacecraft and the astronaut
accelerates to the right. Which one of the
following statements concerning this situation is
true? a) The astronaut stops moving after she
stops pushing on the spacecraft. b) The
velocity of the astronaut increases while she is
pushing on the spacecraft. c) The force exerted
on the astronaut is larger than the force exerted
on the spacecraft. d) The spacecraft does not
move, but the astronaut moves to the right with a
constant speed. e) The force exerted on the
spacecraft is larger than the force exerted on
the astronaut.
54
5.9.1. Some children are pulling on a rope that
is raising a bucket via a pulley up to their tree
house. The bucket containing their lunch is
rising at a constant velocity. Ignoring the mass
of the rope, but not ignoring air resistance,
which one of the following statements concerning
the tension in the rope is true? a) The
magnitude of the tension is zero newtons. b)
The direction of the tension is downward. c)
The magnitude of the tension is equal to that of
the weight of the bucket. d) The magnitude of
the tension is less than that of the weight of
the bucket. e) The magnitude of the tension is
greater than that of the weight of the bucket.
55
5.9.1. Some children are pulling on a rope that
is raising a bucket via a pulley up to their tree
house. The bucket containing their lunch is
rising at a constant velocity. Ignoring the mass
of the rope, but not ignoring air resistance,
which one of the following statements concerning
the tension in the rope is true? a) The
magnitude of the tension is zero newtons. b)
The direction of the tension is downward. c)
The magnitude of the tension is equal to that of
the weight of the bucket. d) The magnitude of
the tension is less than that of the weight of
the bucket. e) The magnitude of the tension is
greater than that of the weight of the bucket.
56
5.9.2. One end of a string is tied to a tree
branch at a height h above the ground. The other
end of the string, which has a length L h, is
tied to a rock. The rock is then dropped from
the branch. Which one of the following
statements concerning the tension in the string
is true as the rock falls? a) The tension is
independent of the magnitude of the rocks
acceleration. b) The magnitude of the tension
is equal to the weight of the rock. c) The
magnitude of the tension is less than the weight
of the rock. d) The magnitude of the tension is
greater than the weight of the rock. e) The
tension increases as the speed of the rock
increases as it falls.
57
5.9.2. One end of a string is tied to a tree
branch at a height h above the ground. The other
end of the string, which has a length L h, is
tied to a rock. The rock is then dropped from
the branch. Which one of the following
statements concerning the tension in the string
is true as the rock falls? a) The tension is
independent of the magnitude of the rocks
acceleration. b) The magnitude of the tension
is equal to the weight of the rock. c) The
magnitude of the tension is less than the weight
of the rock. d) The magnitude of the tension is
greater than the weight of the rock. e) The
tension increases as the speed of the rock
increases as it falls.
58
5.9.3. A rock is suspended from a string.
Barbara accelerates the rock upward with a
constant acceleration by pulling on the other end
of the string. Which one of the following
statements concerning the tension in the string
is true? a) The tension is independent of the
magnitude of the rocks acceleration. b) The
magnitude of the tension is equal to the weight
of the rock. c) The magnitude of the tension is
less than the weight of the rock. d) The
magnitude of the tension is greater than the
weight of the rock. e) The tension decreases as
the speed of the rock increases as it rises.
59
5.9.3. A rock is suspended from a string.
Barbara accelerates the rock upward with a
constant acceleration by pulling on the other end
of the string. Which one of the following
statements concerning the tension in the string
is true? a) The tension is independent of the
magnitude of the rocks acceleration. b) The
magnitude of the tension is equal to the weight
of the rock. c) The magnitude of the tension is
less than the weight of the rock. d) The
magnitude of the tension is greater than the
weight of the rock. e) The tension decreases as
the speed of the rock increases as it rises.
60
5.9.4. Consider the following (i) the book is at
rest, (ii) the book is moving at a constant
velocity, (iii) the book is moving with a
constant acceleration. Under which of these
conditions is the book in equilibrium? a) (i)
only b) (ii) only c) (iii) only d) (i) and
(ii) only e) (ii) and (iii) only
61
5.9.4. Consider the following (i) the book is at
rest, (ii) the book is moving at a constant
velocity, (iii) the book is moving with a
constant acceleration. Under which of these
conditions is the book in equilibrium? a) (i)
only b) (ii) only c) (iii) only d) (i) and
(ii) only e) (ii) and (iii) only
62
5.9.5. A block of mass M is hung by ropes as
shown. The system is in equilibrium. The point
O represents the knot, the junction of the three
ropes. Which of the following statements is true
concerning the magnitudes of the three forces in
equilibrium? a) F1 F2 F3 b) F1 F2
0.5F3 c) F1 F2 F3 d) F1 gt F3 e) F2 lt F3
63
5.9.5. A block of mass M is hung by ropes as
shown. The system is in equilibrium. The point
O represents the knot, the junction of the three
ropes. Which of the following statements is true
concerning the magnitudes of the three forces in
equilibrium? a) F1 F2 F3 b) F1 F2
0.5F3 c) F1 F2 F3 d) F1 gt F3 e) F2 lt F3
64
5.9.6. A team of dogs pulls a sled of mass 2m
with a force . A second sled of mass m is
attached by a rope and pulled behind the first
sled. The tension in the rope is . Assuming
frictional forces are too small to consider,
determine the ratio of the magnitudes of the
forces and , that is, P/T. a) 3 b)
2 c) 1 d) 0.5 e) 0.33
65
5.9.6. A team of dogs pulls a sled of mass 2m
with a force . A second sled of mass m is
attached by a rope and pulled behind the first
sled. The tension in the rope is . Assuming
frictional forces are too small to consider,
determine the ratio of the magnitudes of the
forces and , that is, P/T. a) 3 b)
2 c) 1 d) 0.5 e) 0.33
66
5.9.7. A man stands on a bathroom scale that
indicates his weight is W. The man is standing
on the scale inside an elevator when it is at
rest. What will the scale read when the elevator
is moving upward at a constant velocity v? a)
The scale will read a value that is slightly less
than W. b) The scale will read a value that is
slightly greater than W. c) The scale will read
the same value W. d) The scale will read a
value that is much greater than W. e) The scale
will read zero newtons.
67
5.9.7. A man stands on a bathroom scale that
indicates his weight is W. The man is standing
on the scale inside an elevator when it is at
rest. What will the scale read when the elevator
is moving upward at a constant velocity v? a)
The scale will read a value that is slightly less
than W. b) The scale will read a value that is
slightly greater than W. c) The scale will read
the same value W. d) The scale will read a
value that is much greater than W. e) The scale
will read zero newtons.
68
5.9.8. In a moving elevator, a woman standing on
a bathroom scale notices that the reading on the
scale is significantly larger than when the
elevator was at rest. The elevator itself only
has two forces acting on it the tension in a
cable and the force of gravity. Which one of the
following statements is false concerning this
situation? a) The elevator is uniformly
accelerating. b) The elevators speed is
increasing as it moves upward. c) The tension
in the cable exceeds the weight of the elevator
and its contents. d) The elevator could be
moving upward at constant speed. e) The
elevator could be moving downward with decreasing
speed.
69
5.9.8. In a moving elevator, a woman standing on
a bathroom scale notices that the reading on the
scale is significantly larger than when the
elevator was at rest. The elevator itself only
has two forces acting on it the tension in a
cable and the force of gravity. Which one of the
following statements is false concerning this
situation? a) The elevator is uniformly
accelerating. b) The elevators speed is
increasing as it moves upward. c) The tension
in the cable exceeds the weight of the elevator
and its contents. d) The elevator could be
moving upward at constant speed. e) The
elevator could be moving downward with decreasing
speed.
70
5.9.9. A force of magnitude F pushes a block of
mass 2m, which in turn pushes a block of mass m
as shown. The blocks are accelerated across a
horizontal, frictionless surface. What is the
magnitude of the force that the smaller block
exerts on the larger block? a) F/3 b)
F/2 c) F d) 2F e) 3F
71
5.9.9. A force of magnitude F pushes a block of
mass 2m, which in turn pushes a block of mass m
as shown. The blocks are accelerated across a
horizontal, frictionless surface. What is the
magnitude of the force that the smaller block
exerts on the larger block? a) F/3 b)
F/2 c) F d) 2F e) 3F
72
5.9.10. A box is held by a rope on a frictionless
inclined surface as shown. What will the
magnitude of the acceleration of the box be if
the rope breaks? a) g b) g sin ? c) g cos
? d) g tan ? e) zero m/s2
73
5.9.10. A box is held by a rope on a frictionless
inclined surface as shown. What will the
magnitude of the acceleration of the box be if
the rope breaks? a) g b) g sin ? c) g cos
? d) g tan ? e) zero m/s2
74
5.9.11. Two identical cement cylinders are
attached to the opposite ends of a spring scale
via very light ropes (the mass of which can be
neglected) that run over frictionless pulleys as
shown. When the same scale was suspended from
the ceiling and one of the cylinders was hung
from it, the scale indicated its weight is W
newtons. What will the scale read in the
configuration shown? a) zero newtons b) W/2
newtons c) W newtons d) 2W newtons e) 4W
newtons
75
5.9.11. Two identical cement cylinders are
attached to the opposite ends of a spring scale
via very light ropes (the mass of which can be
neglected) that run over frictionless pulleys as
shown. When the same scale was suspended from
the ceiling and one of the cylinders was hung
from it, the scale indicated its weight is W
newtons. What will the scale read in the
configuration shown? a) zero newtons b) W/2
newtons c) W newtons d) 2W newtons e) 4W
newtons
About PowerShow.com