Spectral Visual Clustering Tendency - PowerPoint PPT Presentation

1 / 42
About This Presentation
Title:

Spectral Visual Clustering Tendency

Description:

L. Wang, X. Geng, J. C. Bezdek, C. Leckie, and K. Ramamohanarao, SpecVAT: Enhanced visual cluster analysis, in Proceedings of the Eighth IEEE International ... – PowerPoint PPT presentation

Number of Views:178
Avg rating:3.0/5.0
Slides: 43
Provided by: rock80
Category:

less

Transcript and Presenter's Notes

Title: Spectral Visual Clustering Tendency


1
Spectral Visual Clustering Tendency
  • L. Wang, X. Geng, J. C. Bezdek, C. Leckie, and K.
    Ramamohanarao,
  • SpecVAT Enhanced visual cluster analysis, in
    Proceedings of the Eighth IEEE International
    Conference on Data Mining, 2008. (ICDM 08), Dec.
  • 2008, pp. 638647.
  • School of Engineering, The University of
    Melbourne, Vic 3010, Australia

2
Clustering
3
Conventional K-means Clustering
4) Steps 2 and 3 are repeated until convergence
has been reached.
3) The centroid of each of the k clusters becomes
the new means.
1) k initial "means" (in this case k3)
2) associating every observation with the nearest
mean.
How to determine the k?
4
Determining the Number of Clusters
  • Determining Before Clustering
  • Cluster Tendency Analysis
  • Determining After Clustering
  • Cluster Validity Measurement

Cluster Tendency Analysis
Cluster Validity Measurement
Clustering
Input
Output
5
Visual Analysis of Cluster Tendency (VAT)
Scatter plot of a 2D data set
Unordered image I(D)
Reordered VAT image I(D)
J. C. Bezdek and R. J. Hathaway. VAT A tool for
visual assement of (cluster) tendency. In Proc.
International Joint Conference on Neural
Networks, pages 22252230, 2002.
6
Dissimilarity Matrix
n objects
Dissimilarity Image
Dissimilarity Matrix
5
1
3
d12
4
2
Dissimilarity between objects oi and oj
Scatter plot of a 2D data set
7
Reordered Dissimilarity Matrix
5
1
3
D
d12
4
2
Reordering
5
4
3
D
2
1
8
Example
9
VAT Algorithm
Dissimilarity Image
Dissimilarity Matrix
5
1
3
Max Dissimilarity
4
2
5
4
3
2
1
10
Problem of VAT
Reordered VAT Image
Scatter plot
11
Scatter plots of 9 synthetic data sets. From left
to right and from top to bottom S-1 S-9
12
Spectral Clustering
Scatter plot of a 2D data set
K-means Clustering
Spectral Clustering
U. von Luxburg. A tutorial on spectral
clustering. Technical report, Max Planck
Institute for Biological Cybernetics, Germany,
2006.
13
Spectral Graph
Connected Groups
Similarity Graph
14
Similarity Graph
Similarity Graph
Vertex Set
Weighted Adjacency Matrix
Similarity Graph
15
Similarity Graph
  • e-neighborhood Graph
  • k-nearest neighbor Graphs
  • Fully connected graph

Gaussian Similarity Function
e-neighborhood
K-nearest neighbor
e
16
Spectral Graph
Connected Groups
Similarity Graph
17
Graph Laplacian
L Laplacian matrix
W adjacency matrix
D degree matrix
1 2 3 4 5
d1 0 0 0 0
0 d2 0 0 0
0 0 d3 0 0
0 0 0 d4 0
0 0 0 0 d5
1
2
3
4
5
1 2 3 4 5
w11 w12 w13 w14 w15
w21 w22 w23 w24 w25
w31 w32 w33 w34 w35
w41 w42 w43 w44 w45
w51 w52 w53 w54 w55
1
2
3
4
5
18
Example
W adjacency matrix
D degree matrix
0 1 1 0 0
1 0 1 0 0
1 1 0 0 0
0 0 0 0 1
0 0 0 1 0
2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 1
2
1
3
4
5
Similarity Graph
L Laplacian matrix
2 -1 -1 0 0
-1 2 -1 0 0
-1 -1 2 0 0
0 0 0 1 -1
0 0 0 -1 1
19
Property of Graph Laplacian
  1. L is symmetric and positive semi-definite.
  2. The smallest eigenvalue of L is 0, the
    corresponding eigenvector is the constant one
    vector 1.
  3. L has n non-negative, real-valued eigenvalues 0
    ? 1 ? ? 2 ? . . . ? ? n.

L Laplacian matrix
2 -1 -1 0 0
-1 2 -1 0 0
-1 -1 2 0 0
0 0 0 1 -1
0 0 0 -1 1
2
1
3
4
5
Similarity Graph
20
Eigenvalue and Eigenvector of Graph Laplacian
Connected Component ? Constant Eigenvector
21
Example
L Laplacian matrix
2 -1 -1 0 0
-1 2 -1 0 0
-1 -1 2 0 0
0 0 0 1 -1
0 0 0 -1 1
2
1
3
4
5
Similarity Graph
Two Connected Components ? Double Zero Eigenvalue
Eigenvectors f1 1 1 1 0 0 f2 0 0 0 1 1
22
Example
First Two Eigenvectors
W adjacency matrix
v1 v2 v3 v4 v5 u1 u2
0 1 1 0 0
1 0 1 0 0
1 1 0 0 0
0 0 0 0 1
0 0 0 1 0
v1
v2
v3
v4
v5
1 0
1 0
1 0
0 1
0 1
2
1
3
4
5
Similarity Graph
For all block diagonal matrices, the spectrum of
L is given by the union of the spectra of Li
23
Spectral Clustering
First k Eigenvectors ? New Clustering Space
2
1
u1 u2
3
1 0
1 0
1 0
0 1
0 1
y1
y2
y3
y4
y5
4
5
Use k-means clustering in the new space
Similarity Graph
24
Spectral Clustering
Scatter plot of a 2D data set
K-means Clustering
Spectral Clustering
25
Spectral VAT (SpecVAT)
Reordered VAT Image
Scatter plots
26
SpecVAT Algorithm
1. Construct Similarity Matrix W 2. Construct
Laplacian Matrix L 3. Choose First k Eigenvectors
u1,,uk 4. Construct New Dissimilarity Matrix
D
Data
u1 u2 u3
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0

y1
y2
y3
y4
y5

27
SpecVAT Images
Original VAT Image
SpecVAT Images with Different k
Desired Result
28
SpecVAT Image Analysis
Histogram of VAT Images
VAT Images
Good VAT Image? Clarity and Block Structure
29
SpecVAT Image Analysis
Within-Cluster
Between-Cluster
Within-Cluster Variance sW
Between-Cluster Variance sB
Desired Distribution Small sW and sB
30
Goodness Measurement of VAT Images
T
Test All T1255 to find the smallest sB
Within-Cluster Variance sW
Between-Cluster Variance sB
Desired Distribution Small sW and sB
31
Determining the Number of Clusters
Test All k1kmax to find the smallest sB
Scatter plots of S-1 data
Scatter plots of S-5 data
32
Visual Clustering
Scatter plot
Good Partition
Bad Partition
C1
C2
C3
C1
C2
C3
33
Visual Clustering
Scatter plot
Good Partition
Bad Partition
C1
C2
C3
C1
C2
C3
34
Visual Clustering
Scatter plot
Good Partition
Bad Partition
Dark within-region and Bright between -region
35
Visual Clustering
Scatter plot
Good Partition
Dark within-region and Bright between -region
Genetic Algorithm is Applied in Paper
36
Result VAT Images
S-1
S-2
S-3
Scatter plots
Original VAT Images
SpecVAT Images
37
Result VAT Images
S-4
S-5
S-6
Scatter plots
Original VAT Images
SpecVAT Images
38
Result VAT Images
S-4
S-5
S-6
Scatter plots
Original VAT Images
SpecVAT Images
39
Results
40
Results
27 L. Zelnik-Manor and P. Perona. Self-tuning
spectral clustering. In Proc. Advances in Neural
Information Processing Systems, 2004.
41
Results
42
Conclusions
  • The VAT is enhanced by using spectral analysis.
  • Based on SpecVAT, the cluster structure can be
    estimated by visual inspection. Number of
    clusters can be automatically estimated.
Write a Comment
User Comments (0)
About PowerShow.com