Loading...

PPT – Splash Screen PowerPoint presentation | free to download - id: 6d6136-MjRkO

The Adobe Flash plugin is needed to view this content

Splash Screen

Chapter 11 Measurement Perimeter, Area, and

Volume Click the mouse or press the space bar to

continue.

Chapter Menu

Measurement Perimeter, Area, and Volume

11

- Lesson 11-1 Perimeter
- Lesson 11-2 Area of Parallelograms
- Lesson 11-3 Problem-Solving Strategy Make a

Model - Lesson 11-4 Area of Triangles
- Lesson 11-5 Problem-Solving Investigation

Choose the Best Strategy - Lesson 11-6 Volume of Rectangular Prisms
- Lesson 11-7 Surface Area of Rectangular Prisms

Lesson 1 Menu

Five-Minute Check (over Chapter 10) Main Idea and

Vocabulary California Standards Key Concept

Perimeter of a Square Key Concept Perimeter of a

Rectangle Example 1 Perimeter of a

Square Example 2 Perimeter of a Rectangle

Lesson 1 MI/Vocab

- I will find the perimeters of squares and

rectangles.

- perimeter

Lesson 1 Standard 1

Standard 5MG1.4 Differentiate between, and use

appropriate units of measures for two- and

three-dimensional objects (i.e., find the

perimeter, area, volume).

Lesson 1 Key Concept 1

Lesson 1 Key Concept 2

Lesson 1 Ex1

The base of the Eiffel Tower is shaped like a

square with each side measuring 125 meters. What

is the perimeter of the base?

P 4s

Perimeter of a square

P 4(125)

Replace s with 125.

P 500

Multiply.

Answer The perimeter of the base of the Eiffel

Tower is 500 meters.

Lesson 1 CYP1

The park is shaped like a square with each side

measuring 100 yards. What is the perimeter of

the park?

- 400 feet
- 400 yards
- 200 yards
- 100 yards

Lesson 1 Ex2

Find the perimeter of the rectangle.

Write the formula.

P 2(7) 2(4)

P 14 8

Multiply.

P 22

Add.

Answer The perimeter is 22 meters.

Lesson 1 CYP2

Find the perimeter of the rectangle.

- 7 cm
- 6 cm
- 8 cm
- 10 cm

End of Lesson 1

Lesson 2 Menu

Five-Minute Check (over Lesson 11-1) Main Idea

and Vocabulary California Standards Key Concept

Area of a Parallelogram Example 1 Find Areas of

Parallelograms Example 2 Find Areas of

Parallelograms Example 3 Real-World Example

Lesson 2 MI/Vocab

- I will find the areas of parallelograms.

- base
- height

Lesson 2 Standard 1

Standard 5MG1.1 Derive and use the

formula for the area of a triangle and of a

parallelogram by comparing it with the formula

for the area of a rectangle.

Standard 5MG1.4 Differentiate between, and use

appropriate units of measures for two- and

three-dimensional objects.

Lesson 2 Key Concept

Lesson 2 Ex1

Find the area of the parallelogram.

The base is 3 and the height is 10.

A bh

Area of parallelogram

A 3 10

Replace b with 3 and h with 10.

A 30

Multiply.

Answer The area is 30 square units or 30 units2.

Lesson 2 CYP1

Find the area of the parallelogram.

- 35 units2
- 28 units2
- 49 units2
- 64 units2

Lesson 2 Ex2

Find the area of the parallelogram.

A bh

Area of parallelogram

A 8.2 4.5

Replace b with 8.2 and h with 4.5.

A 36.9

Multiply.

Answer The area is 36.9 square centimeters or

36.9 cm2.

Lesson 2 CYP2

Find the area of the parallelogram.

- 68 mm2
- 70 mm2
- 68.64 mm2
- 70.42 mm2

Lesson 2 Ex3

A particular area rug is shaped like a

parallelogram. Find the area of the floor it will

cover.

Estimate A 11 6 or 66 ft2

Lesson 2 Ex3

A bh

Area of parallelogram

Multiply.

Check for Reasonableness Compare to the estimate.

Lesson 2 CYP3

A parking lot is shaped like a parallelogram.

Find the area of ground it will cover.

- 7,021 yd2

- 7,200 yd2

End of Lesson 2

Lesson 3 Menu

Five-Minute Check (over Lesson 11-2) Main

Idea California Standards Example 1

Problem-Solving Strategy

Lesson 3 MI/Vocab

- I will solve problems by making a model.

Lesson 3 Standard 1

Standard 5MR2.3 Use a variety of methods, such as

words, numbers, symbols, charts, graphs, tables,

diagrams, and models, to explain mathematical

reasoning.

Standard 5MG1.4 Differentiate between, and use

appropriate units of measures for two- and

three-dimensional objects.

Lesson 3 Ex1

Lesson 3 Ex1

Understand

What facts do you know?

- The oranges need to be in the shape of a square

pyramid with 100 oranges in the base and 1 orange

on top. - There are 400 oranges altogether.

What do you need to find?

- Are 400 oranges enough to make a square pyramid

with a base of 100 oranges?

Lesson 3 Ex1

Plan

Make a model using pennies to find the number of

oranges needed.

Lesson 3 Ex1

Solve

Begin with 100 pennies. For each consecutive

layer, place 1 penny where 4 meet.

Lesson 3 Ex1

Solve

Answer By continuing this pattern, 100 81

64 49 36 25 16 9 4 1 or 385 oranges

will be needed. Since 385 lt 400, 400 oranges are

enough to make a square pyramid.

Lesson 3 Ex1

Check

Look back at the problem. 400 100 81 64

49 36 25 16 9 4 1 leaves 15 oranges.

End of Lesson 3

Lesson 4 Menu

Five-Minute Check (over Lesson 11-3) Main

Idea California Standards Key Concept Area of a

Triangle Example 1 Find the Area of a

Triangle Example 2 Find the Area of a

Triangle Example 3 Real-World Example

Area of Triangles

Lesson 4 MI/Vocab

- I will find the areas of triangles.

Lesson 4 Standard 1

Standard 5MG1.1 Derive and use the

formula for the area of a triangle and of a

parallelogram by comparing it with the formula

for the area of a rectangle.

Standard 5MG1.4 Differentiate between, and use

appropriate units of measures for two- and

three-dimensional objects.

Lesson 4 Key Concept

Lesson 4 Ex1

Find the area of the triangle.

By counting, you find that the measure of the

base of the triangle is 5 and the height is 8.

Area of a triangle

Replace b with 5 and h with 8.

Lesson 4 Ex1

Multiply.

A 20

Multiply.

Answer The area of the triangle is 20 square

units.

Lesson 4 CYP1

Find the area of the triangle.

A. 25 units2

B. 16 units2

D. 20 units2

Lesson 4 Ex2

Find the area of the triangle.

Area of a triangle

Replace b with 16.4 and h with 7.9.

Lesson 4 Ex2

Multiply.

Divide. 129.56 2 64.78

A 64.78

Answer The area of the triangle is 64.78 square

centimeters.

Lesson 4 CYP2

Find the area of the triangle.

- 99 cm2

B. 99 cm

Lesson 4 Ex3

Clio cut out a banner in the shape of a triangle.

What is the area of the banner?

Area of a triangle

Replace b with 12 and h with 6.

Lesson 4 Ex3

Multiply.

Divide. 72 2 36

A 36

Answer The area of the triangle is 36 square

inches.

Lesson 4 CYP3

Kira drew a triangle on the sidewalk with chalk.

What is the area of her triangle?

- 21 ft2
- 10.5 ft2
- 20 ft2
- 11 ft2

End of Lesson 4

Lesson 5 Menu

Five-Minute Check (over Lesson 11-4) Main

Idea California Standards Example 1

Problem-Solving Investigation

Lesson 5 MI/Vocab

- I will choose the best strategy to solve a

problem.

Lesson 5 Standard 1

Standard 5MR2.3 Use a variety of methods, such as

words, numbers, symbols, charts, graphs, tables,

diagrams, and models, to explain mathematical

reasoning.

Standard 5MG1.4 Differentiate between, and use

appropriate units of measures for two- and

three-dimensional objects.

Lesson 5 Ex1

ROSS I want people to find out about a party Im

having, so I will tell Jamie and Cara and have

each of them tell two friends, and so on. I

wonder how many people would be invited to the

party in three minutes if two friends tell

another two friends each minute? YOUR MISSION

Find the number of people who would be invited to

the party in three minutes.

Lesson 5 Ex1

Understand

What facts do you know?

- You know that Ross tells Jamie and Cara about the

party, and then each friend tells two other

friends each minute.

What do you need to find?

- You need to find the number of people who would

be invited to the party in three minutes.

Lesson 5 Ex1

Plan

Draw a diagram to show the number of people who

would be invited to the party.

Lesson 5 Ex1

Solve

Ross

Jamie

Cara

1 minute

1

2

2 minutes

1

2

2

2

2

1

3 minutes

1

1

2

1

Answer So, 14 people would be invited to the

party.

Lesson 5 Ex1

Check

Look back at the problem to see if the diagram

meets all of the requirements. Since the diagram

is correct, the answer is correct.

End of Lesson 5

Lesson 6 Menu

Five-Minute Check (over Lesson 11-5) Main Idea

and Vocabulary California Standards Key Concept

Volume of a Rectangular Prism Example 1 Find the

Volume of a Rectangular

Prism

Example 2 Real-World Example

Lesson 6 MI/Vocab/Standard 1

- I will find the volume of rectangular prisms.

- rectangular prism
- volume
- cubic units

Lesson 6 Standard 1

Standard 5MG1.3 Understand the concept

of volume and use the appropriate units in common

measuring systems to compute the volume of

rectangular solids.

Standard 5MG1.4 Differentiate between, and use

appropriate units of measures for two- and

three-dimensional objects (i.e., find the

perimeter, area, volume).

Lesson 6 Key Concept

Lesson 6 Ex1

Find the volume of the rectangular prism.

Estimate V 10 m 10 m 5 m or 500 m3

In the figure, the length is 10 meters, the width

is 8 meters, and the height is 5 meters.

Lesson 6 Ex1

Volume of rectangular prism

V 10 8 5

V 400

Multiply.

Answer The volume is 400 cubic meters.

Lesson 6 Ex1

Check for Reasonableness

Since we overestimated, the answer should be less

than the estimate. 400 lt 500

Lesson 6 CYP1

Find the volume of a rectangular prism with a

length of 14 millimeters, a width of 6

millimeters, and a height of 3 millimeters.

- 250 mm3
- 300 mm3
- 252 mm3
- 254 mm3

Lesson 6 Ex2

A closet is 6.2 feet long, 2.8 feet wide, and 8.1

feet high. Find the amount of space contained

within the closet for storage. Round to the

nearest foot.

Estimate V 6 ft 3 ft 8 ft or 144 ft3

Lesson 6 Ex2

Volume of rectangular prism

V 6.2 2.8 8.1

V 140.66

Multiply, then round to the nearest foot.

Answer The storage space in the closet is about

141 cubic feet.

Lesson 6 Ex2

Check for Reasonableness

Compare to the estimate. 141 144.

Lesson 6 CYP2

A tissue box is 12 inches long, 5 inches wide and

5 inches high. Find the amount of space contained

within the box for tissues.

- 300 cubic inches
- 250 cubic inches
- 125 cubic inches
- 315 cubic inches

End of Lesson 6

Lesson 7 Menu

Five-Minute Check (over Lesson 11-6) Main Idea

and Vocabulary California Standards Key Concept

Surface Area of a Rectangular Prism Example 1

Find the Surface Area Example 2 Real-World

Example

Using a Net to Build a Cube

Lesson 7 MI/Vocab

- I will find the surface areas of rectangular

prisms.

- surface area

Lesson 7 Standard 1

Standard 5MG1.2 Construct a cube and

rectangular box from two-dimensional patterns and

use these patterns to compute the surface area

for these objects.

Standard 5MR1.2 Determine when and how to break a

problem into simpler parts.

Lesson 7 Key Concept

Lesson 7 Ex1

Find the surface area of the rectangular prism.

Find the area of each face.

top and bottom

Lesson 7 Ex1

front and back

two sides

2(wh) 2(4 3) or 24

Add to find the surface area.

Answer The surface area is 64 48 24 or 136

square centimeters.

Lesson 7 CYP1

Find the surface area of a rectangular prism that

is 12 inches long, 6 inches wide, and 5 inches

high.

- 320 square inches
- 300 square inches
- 324 square inches
- 342 square inches

Lesson 7 Ex2

A box measures 13 inches long, 7 inches wide, and

4 inches deep. What is the surface area of the

box?

Surface area of a prism

S 2(13 7) 2(13 4) 2(7 4)

S 2(91) 2(52) 2(28)

Simplify within parentheses.

S 182 104 56

Multiply.

S 342

Add.

Answer The box has a surface area of 342 square

inches.

Lesson 7 CYP2

A flat screen television measure 48 inches long,

2 inches wide, and 25 inches high. What is the

surface area of the TV?

- 2,692 square inches
- 2,700 square inches
- 1,874 square inches
- 2,962 square inches

End of Lesson 7

CR Menu

Measurement Perimeter, Area, and Volume

11

Five-Minute Checks Math Tool Chest Image Bank

Area of Triangles Using a Net to Build a Cube

IB Instructions

To use the images that are on the following four

slides in your own presentation 1. Exit this

presentation. 2. Open a chapter presentation

using a full installation of Microsoft

PowerPoint in editing mode and scroll to the

Image Bank slides. 3. Select an image, copy it,

and paste it into your presentation.

IB 1

IB 2

IB 3

IB 4

5Min Menu

Measurement Perimeter, Area, and Volume

11

Lesson 11-1 (over Chapter 10) Lesson 11-2 (over

Lesson 11-1) Lesson 11-3 (over Lesson

11-2) Lesson 11-4 (over Lesson 11-3) Lesson

11-5 (over Lesson 11-4) Lesson 11-6 (over Lesson

11-5) Lesson 11-7 (over Lesson 11-6)

5Min 1-1

(over Chapter 10)

Draw the three-dimensional figure whose top,

side, and front views are shown.

5Min 1-1

(over Chapter 10)

5Min 1-2

(over Chapter 10)

Draw the three-dimensional figure whose top,

side, and front views are shown.

5Min 1-2

(over Chapter 10)

5Min 2-1

(over Lesson 11-1)

Find the perimeter of the rectangle.

length 7 in., width 4 in.

- 11 in.
- 28 in.
- 3 in.
- 22 in.

5Min 2-2

(over Lesson 11-1)

Find the perimeter of the square.

sides 13 cm

- 52 cm
- 25 in
- 36 cm
- 62 cm

5Min 2-3

(over Lesson 11-1)

Find the perimeter of the rectangle.

length 14 ft, width 10 ft

- 24 ft
- 48 ft
- 144 ft
- 140 in

5Min 2-4

(over Lesson 11-1)

Find the perimeter of the square.

sides 25 yd

- 100 yd
- 25 yd
- 255 ft
- 125 ft

5Min 3-1

(over Lesson 11-2)

Find the area of the parallelogram.

base 14 yd, height 8 yd

- 128 yd2
- 28 yd2
- 248 yd2
- 112 yd2

5Min 3-2

(over Lesson 11-2)

Find the area of the parallelogram.

base 13 ft, height 11 ft

- 143 ft2
- 141 ft2
- 144 ft2
- 144 yd2

5Min 3-3

(over Lesson 11-2)

Find the area of the parallelogram.

- 48 in2
- 44 in2
- 52 in2
- 48 ft

5Min 3-4

(over Lesson 11-2)

Find the area of the parallelogram.

base 9.6 cm, height 5.2 cm

- 49.92 cm2
- 45.12 cm2
- 14.8 cm2
- 24.8 cm2

5Min 4-1

(over Lesson 11-3)

Solve. Use the make a model strategy. Cans of

tuna are stacked into a 4-layer pyramid-shaped

display. The bottom layer is 8-cans long and

4-cans wide. There is 1 less can in the length

and width of each layer above it. How many cans

are on display?

- 48 cans
- 52 cans
- 44 cans
- 70 cans

5Min 5-1

(over Lesson 11-4)

Find the area of the triangle.

base 5 ft, height 5 ft

- 25 ft2
- 25 ft
- 12.5 ft2
- 12.5 ft

5Min 5-2

(over Lesson 11-4)

Find the area of the triangle.

base 48 cm, height 23 cm

- 552 cm2
- 71 cm2
- 554 cm2
- 600 cm2

5Min 5-3

(over Lesson 11-4)

Find the area of the triangle.

base 5.2 cm, height 3.2 cm

- 2.32 cm2
- 8.32 cm2
- 15.23 cm2
- 18.32 cm2

5Min 5-6

(over Lesson 11-4)

Find the area of the triangle.

C. 2 in2

5Min 6-1

(over Lesson 11-5)

Solve. Desta saved 1 the first week. After that

she saved 2 more each week than she had the week

before. How much money did she save in the tenth

week?

- 22
- 24
- 19
- 34

5Min 7-1

(over Lesson 11-6)

Find the volume of the prism.

length 8 yd, width 7 yd, height 3 yd

- 168 yd3
- 18 yd3
- 59 yd3
- 88 yd3

5Min 7-2

(over Lesson 11-6)

Find the volume of the prism.

length 12 cm, width 8 cm, height 5 cm

- 240 cm3
- 480 cm3
- 144 in3
- 25 in3

5Min 7-3

(over Lesson 11-6)

Find the volume of the prism.

- 144 ft3

C. 3,444 in3

D. 1,333 cm3

5Min 7-4

(over Lesson 11-6)

Find the volume of the prism.

length 2.4 cm, width 17.1 cm, height 3.6 cm

- 156.222 cm3
- 147.744 cm3
- 24 cm3
- 444 in

End of Custom Shows

This slide is intentionally blank.