Tagommenders: Connecting Users to Items through Tags - PowerPoint PPT Presentation

About This Presentation
Title:

Tagommenders: Connecting Users to Items through Tags

Description:

Overview Introduction Tagommender Philosophy Dataset Tag Preference Inference Approach Methods ... used extend from Vector ... mean movie rating ... – PowerPoint PPT presentation

Number of Views:76
Avg rating:3.0/5.0
Slides: 37
Provided by: Goo753
Category:

less

Transcript and Presenter's Notes

Title: Tagommenders: Connecting Users to Items through Tags


1
Tagommenders Connecting Users to Items through
Tags
  • Written by Shilad Sen, Jesse Vig, and John Riedl
    (2009)
  •  
  • Presented by Ken Hu and Hassan Hattab

2
Overview
  • Introduction
  • Tagommender
  • Philosophy
  • Dataset
  • Tag Preference Inference
  • Approach
  • Methods
  • Recommenders
  • Implicit
  • Explicit
  • Results
  • Conclusion

3
First, Recommenders. 
  • What is Recommender system?
  • Two Main tasks
  • Recommend.
  • Predict.

4
Recommender Systems 
  • Types of recommender systems
  • User-based decides according to the user's
    previous choices
  • Item-based decides according to related items to
    a selected item
  • SVD
  • Problem These methods don't consider the content
    of the item. 
  • Solution Content-based Recommenders 

5
Overview
  • Introduction
  • Tagommender
  • Philosophy
  • Dataset
  • Tag Preference Inference
  • Approach
  • Methods
  • Recommenders
  • Implicit
  • Explicit
  • Results
  • Conclusion

6
Tagging Systems   
  • Uses tags to address (categorize) items to users
  • Tags are created by general users (More
    meaningful )

7
Tagommenders 
  • Basically, they combine Recommenders
    (content-based) and tagging systems. 
  • Two main parts for Tagommenders
  • They infer users preferences for tags based on
    their interactions with tags and movies
  • and they infer users preferences for movies
    based on their preferences for tags.

8
Tagommender's data set
  • These are collected from the MovieLens website.
  • Movie Rating 
  • Movie clicks
  • Tag applications
  • Tag Searches 
  •  Tag Preference Ratings

9
Tagommender's data set
  •  

10
Overview
  • Introduction
  • Tagommender
  • Philosophy
  • Dataset
  • Tag Preference Inference
  • Approach
  • Methods
  • Recommenders
  • Implicit
  • Explicit
  • Results
  • Conclusion

11
Tagommender's  Cycle
  •  

12
Inferring Tag Preference
  • Inferring Preference using Tag Signals (Direct) 

13
Inferring Tag Preference
  • Inferring Preference using Item Signals
    (indirect) 

14
Inferring Preference using Item Signals
  • Sigmoid transformation is used to calculate the
    weight of movie m to tag t

15
Inferring Preference using Item SignalsMethods
  • Movie-Clicks
  • Movie-log-odds-clicks
  • Movie-r-Clicks
  • Movie-r-log-odds-clicks
  • Movie-Rating
  • Movie Bayes

16
1- Movie-Clicks
  •  

set of movies clicked by user u
17
2- Movie-log-odds-clicks
  •  

18
3- Movie-r-Clicks4- Movie-r-log-odds-clicks
  • The only difference is Movie-rating is counted
    rather than movie clicks 

19
5- Movie-Rating
  • A users preference for a tag is the average
    rating for a movie under that tag. 

user u's rating for movie m
20
6- Movie-bayes
  • A bayesian generative model for users rating for
    a certain tag.
  • if the tag is relevant to a rating then the
    rating will be chosen from the user-tag-specific
    distribution
  • Else, it will be chosen from the user background
    rating  distribution

21
Which one is better?
  •  

22
Overview
  • Introduction
  • Tagommender
  • Philosophy
  • Dataset
  • Tag Preference Inference
  • Approach
  • Methods
  • Recommenders
  • Implicit
  • Explicit
  • Results
  • Conclusion

23
Recommenders
  • Implicit
  • Tag data only
  • Recommend only
  • 2 algorithms
  • Implicit-tag
  • Implicit-tag-pop
  • Explicit Algorithms
  • Use users' movie ratings
  • Recommend and predict
  • 3 algorithms
  • Cosine-tag
  • Linear-tag
  • Regress-tag

24
Implicit Implicit-tag
  • Vector Space Model
  • Inferred tag preference
  • Relevance weight

25
Implicit Implicit-tag-pop
  • Implicit-tag with movie popularity
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  • Tag gt clicks, clicker count gt click count
  • Linear estimation of log function

26
Recommenders
  • Implicit
  • Tag data only
  • Recommend only
  • 2 algorithms
  • Implicit-tag
  • Implicit-tag-pop
  • Explicit Algorithms
  • Use users' movie ratings
  • Recommend and predict
  • 3 algorithms
  • Cosine-tag
  • Linear-tag
  • Regress-tag

27
Explicit Cosine-tag
  • Cosine similarity rating vs tag preference

28
Explicit Linear-tag
  • Least-square fit linear regression

29
Explicit Regress-tag
  • Linear-tag with similarity between tags 
  •  
  •  
  •  
  • SVM was best to estimate h
  • Robustness against overfitting

30
Overview
  • Introduction
  • Tagommender
  • Philosophy
  • Dataset
  • Tag Preference Inference
  • Approach
  • Methods
  • Recommenders
  • Implicit
  • Explicit
  • Results
  • Conclusion

31
Results Background
  • Comparisons
  • Top-5
  • Compare top five recommendations
  • MAE
  • Average error of prediction
  • Competitors
  • Overall-avg
  • User-avg
  • User-movie-avg
  • Explicit-item
  • Implicit-item
  • Funk-svd
  • Hybrid
  • Regress-tag funk-svd

32
Results Top-5
33
Results MAE
34
Overview
  • Introduction
  • Tagommender
  • Philosophy
  • Dataset
  • Tag Preference Inference
  • Approach
  • Methods
  • Recommenders
  • Implicit
  • Explicit
  • Results
  • Conclusion

35
Conclusion
  • Introduced recommender algorithms based on user
    suggested tags (Tagommenders)
  • Best at recommendation tasks
  • Adds value at prediction tasks
  • Hybrid predictors does very well
  • Other advantages
  • Ease to explain
  • Algorithmic evaluation of tag quality

36
Questions?
  •  
Write a Comment
User Comments (0)
About PowerShow.com