Modelling of the removal of livestock-related airborne contaminants via biofiltration - PowerPoint PPT Presentation

1 / 36
About This Presentation
Title:

Modelling of the removal of livestock-related airborne contaminants via biofiltration

Description:

Title: Livestock - related odour removal with biofiltration Author: Dennis McNevin Last modified by: CENG Created Date: 6/11/1996 4:00:14 AM Document presentation format – PowerPoint PPT presentation

Number of Views:94
Avg rating:3.0/5.0
Slides: 37
Provided by: DennisM76
Category:

less

Transcript and Presenter's Notes

Title: Modelling of the removal of livestock-related airborne contaminants via biofiltration


1
Modelling of the removal of livestock-related
airborne contaminants via biofiltration
  • Dennis McNevin and John Barford
  • Department of Chemical Engineering
  • University of Sydney
  • Australia

2
Biofiltration
3
Mathematical model
4
Solid filter medium
  • bulk density of the dry solid (g per m3 dry
    solid)
  • voidage of the dry solid (m3 space per m3 dry
    solid)
  • water content of the solid (m3 water per g dry
    solid)
  • interfacial area available for heat and mass
    transfer (m2 per g dry solid)
  • partition coefficient (g.m-3 compound j in the
    gas phase at equilibrium with 1 g.m-3 compound j
    adsorbed onto the solid)

5
Equations
  • Differential balances or transport equations
    mass, heat
  • Equilibrium expressions
  • physical, chemical
  • Rate expressions
  • mass heat transfer, microbial activity
  • Air phase behaviour
  • pressure, density

6
Bioconversions aerobic
  • Organic carbon oxidation
  • VOC CO2 H2O chemoheterotrophs
  • Nitrification
  • NH4 NO2- Nitrosomonas spp.
  • NO2- NO3- Nitrobacter spp.
  • Sulfide oxidation
  • S2- SO42- Thiobacillus spp.

7
Aqueous phase mass balances
  • Aqueous species divided into four groups

8
Volatile, non-dissociating species
  • j VOC, O2, N2
  • Diffusion
  • Bulk flow
  • microbial production/consumption
  • mass transfer from air/biofilm interface

9
Non-volatile, non-dissociating species
  • j Ca2, Cl-
  • Diffusion
  • Bulk flow

10
Dissociating species
11
Volatile, dissociating species
  • j NH3, H2S, CO2
  • Diffusion
  • Bulk flow
  • microbial production/consumption
  • mass transfer from air/biofilm interface

12
Non-volatile, dissociating species
  • j HNO2, HNO3, H2SO4
  • Diffusion
  • Bulk flow

13
Interfacial equilibrium
  • Partition coefficient for mass
  • Antoine equation for temperature

14
Chemical equilibriumDissociation
  • Water
  • Acids
  • Bases

15
Chemical equilibriumElectroneutrality
16
Mass transfer
  • Air phase
  • Wakao Kaguei (1982)
  • Aqueous phase (diffusion controlled)

17
Heat transfer
  • Air phase
  • Wakao Kaguei (1982)
  • Aqueous phase (diffusion controlled)

18
Gross rate of biomass growth
  • Monod (1942)

19
Net rate of biomass growth
  • Endogenous or maintenance metabolism
  • gives a true growth rate
  • k VOC oxidisers, nitrifiers, sulfide
  • oxidisers

20
Microbial substrates
  • For each micro-organism, three substrate
  • requirements are considered
  • anabolism
  • carbon source
  • catabolism (energy source)
  • electron donor
  • electron acceptor

21
Case study Nitrification
  • Anabolism (balanced for carbon)
  • Catabolism

22
Bioconversion rates
  • Bioconversion rates are linked to gross
  • biomass growth rates
  • Yj/x moles compound j per g biomass

23
pH and growth rate
24
Temperature and growth rate
25
Numerical solution
  • P.D.E.s converted to O.D.E.s by discretising
    the spatial dimension with finite (backward)
    differences
  • Biofilter height divided into n equal elements.
    In the ith element

26
Numerical solution (cont.)
  • System of O.D.E.s and algebraic equations solved
    by SPEEDUP (Aspen Technology, 1994)
  • Modified Gears method integrator selected

27
Comparison with experimental data
  • Hodge Devinny (1995)
  • Compost biofilter for removal of ethanol
  • Solid medium characteristics
  • 0.45
  • W 60
  • 247 000 g dry compost per m3
  • 0.001 m (a 0.004 m2g-1)
  • 0.0003

28
Comparison with experimental data (cont.)
  • Inlet air
  • ug 23.7 m.hr-1
  • CEtOH 11 000 ppm
  • Solid medium buffered to pH 7.5 with 0.0251
    mol.L-1 total carbonate

29
Air phase ethanol concentration
30
Carbon dioxide concentration profile
31
Aqueous phase pH
32
Tuning the model
  • Requires knowledge of
  • microbiological constants
  • kinetic
  • stoichiometric
  • thermodynamic equilibrium constants
  • physical
  • chemical
  • rheological properties

33
Design variables
  • Choice of solid medium
  • Column dimensions
  • diameter
  • height
  • boundary conditions
  • initial conditions

34
Reaction vs diffusion limitation
  • Reaction limitation
  • low Thiele number,
  • high solubility, C
  • low half-saturation constant, K
  • Diffusion limitation
  • high Thiele number,
  • low solubility, C
  • high half-saturation constant, K

35
Thiele number
  • Indication of relative rates of biological
  • degradation and diffusion through the
  • biofilm
  • ?? aqueous film characteristic dimension (m)
  • x biomass concentration (g.m-3)
  • ?? biomass growth rate (hr-1)
  • Y biomass yield from substrate (g.g-1)
  • D diffusion coefficient (m2hr-1)

36
In conclusion ...
  • Numerical model successfully predicts VOC removal
    via biofiltration
  • Model reveals information useful for optimising
    microbial activity
  • Model may be tuned for a particular application
Write a Comment
User Comments (0)
About PowerShow.com