Creation of Colloidal Periodic Structure - PowerPoint PPT Presentation

About This Presentation
Title:

Creation of Colloidal Periodic Structure

Description:

Title: Creation of Colloidal Periodic Structure Author: Last modified by: Created Date: 11/18/2002 3:51:37 AM Document presentation format – PowerPoint PPT presentation

Number of Views:169
Avg rating:3.0/5.0
Slides: 28
Provided by: 6649732
Category:

less

Transcript and Presenter's Notes

Title: Creation of Colloidal Periodic Structure


1
2006 ????
Laser Optics (??? ??)
?? ?? ? ? ? ? ? P.W. Miloni, J.H. Eberly,
LASERS, John Wiley Sons, 1991 ??? W.
Demtroder, Laser Spectroscopy, Springer-Verlag,
1998 F. L. Pedrotti, S.J., L.S.
Pedrotti, Introduction to Optics, Prentice-Hall,
1993
2
Chapter 1. Introduction to Laser Operation
1.1 Introduction LASER Light
Amplification by the Stimulated Emission of
Radiation 1916, A. Einstein predicted
stimulated emission 1954, C. H. Townes et al.
developed a MASER 1958, A. Schawlow, C.H. Townes
adapted the principle of MASER to light 1960,
T.H. Maiman Ruby laser _at_ 694.3 nm 1961, A.
Javan He-Ne laser _at_ 1.15 mm, 632.8 nm
3
Einsteins quantum theory of radiation
N1, N2 No. of atoms at E1, E2 r photon
density A211/t21 spontaneous emission rate
B12, B21 stimulated absorption/emission
coefficients
4
(No Transcript)
5
(No Transcript)
6
Four key elements of a LASER - Gain medium
(Active medium) - Pumping source - Cavity
(Resonator) - Output coupler
7
Four key elements of a LASER
1) Pumping source - Optical Nd-YAG, Ruby,
Dye, Tisapphire, - Electrical He-Ne, Ar,
CO2, N2, LD, - Chemical HF, I2, 2)
Active medium - Gas He-Ne, Ar, CO2, N2,
- Liquid Dye - Solid Nd-YAG, Ruby,
Tisapphire, LD, 3) Cavity or Resonator -
Resonator with total reflector Maximizing the
light amplification - Output coupler
Extracting a laser light - Resonance condition
ml/2L (minteger)
8
1.2 Lasers and Laser Light (Characteristics of
laser light)
Monochromaticity (???) - Linewidth(FWHM) 7.5
kHz (He-Ne laser)
ltlt 940 MHz (low
pressure Cd lamp) Coherence (???) - Definite
phase correlation in the radiation field at
different locations(spatial) and different
times(temporal) Directionality (???) -
Divergence angle f1.27l/D lt q2.44l/D
(diffraction limit angle)
Brightness (?? ??) - Radiance 106
W/cm2-sr (4mW, He-Ne laser)
ltlt 250
W/cm2-sr (super-high-pressure Hg
lamp) Focusability (???) - Focusing diameter
d f f
9
1.5 Einstein theory of light-matter interaction
(Laser action)
  • Number of photons,
  • Number of atoms in level 2,

pumping
loss
spontaneous emission
stimulated emission
  • In steady state

threshold number of atoms
Minimum(threshold) pumping condition
10
Spatial distribution of laser beam (Gaussian beam)
Maxwells curl equations
Scalar wave equation
gt
Put,
(monochromatic wave)
gt Helmholtz equation
Assume,
gt
Put,
gt
11
(No Transcript)
12
(No Transcript)
13
(No Transcript)
14
Gaussian beam
15
Propagation of Gaussian beam - ABCD law
Matrix method (Ray optics)
16
Ray-transfer matrices
17
(No Transcript)
18
(No Transcript)
19
ABCD law for Gaussian beam
20
example) Focusing a Gaussian beam
21
(No Transcript)
22
Chapter 2. Classical Dispersion Theory
2.1 Introduction
Maxwells equations
(for nonmagnetic media)
Wave equations
(2.1.13)
23
2.2 The Electron Oscillator Model
Equation of motion for the electron
Electric-dipole approximation
where,
relative coordinate of the e-n pair
center-of-mass coordinate of the e-n pair
reduced mass
Electron oscillator model (Lorentz model) ltrefer
p.30-31gt
24
2.3 Refractive Index and Polarizability
Consider a monochromatic plane wave,
Dipole moment
where, polarizability
Polarization
25
From (2.1.13),
dispersion relation in a medium
refractive index of medium
For a medium with the z electrons in an atom
(2.3.22a)
26
Electric susceptibility (macroscopic parameter),

27
2.4 The Cauchy Formula
From (2.3.22),
If we suppose further that
(as in like a gas medium)
Cauchy formula
where,
Write a Comment
User Comments (0)
About PowerShow.com