Biology 2250 Principles of Genetics - PowerPoint PPT Presentation

1 / 82
About This Presentation
Title:

Biology 2250 Principles of Genetics

Description:

Principles of Genetics Announcements Lab 4 Information: B2250 (Innes) webpage download and print before lab. Virtual fly: log in and practice http://biologylab ... – PowerPoint PPT presentation

Number of Views:293
Avg rating:3.0/5.0
Slides: 83
Provided by: DavidI152
Category:

less

Transcript and Presenter's Notes

Title: Biology 2250 Principles of Genetics


1
Biology 2250Principles of Genetics
  • Announcements
  • Lab 4 Information B2250 (Innes) webpage
  • download and print before lab.
  • Virtual fly log in and practice
  • http//biologylab.awlonline.com/

2
Test 2 Thursday Nov. 17
  • http//webct.mun.ca8900/
  • All quizzes on WebCT for Review
  • Office Hours 130 230 Tue, Wed., Thr
  • or by appointment 737-4754, dinnes_at_mun.ca

3
Mendelian Genetics
  • Topics
  • -Transmission of DNA during cell division
  • Mitosis and Meiosis
  • - Segregation
  • - Sex linkage (problem how to get a
    white-eyed female)
  • - Inheritance and probability
  • - Independent Assortment
  • - Mendelian genetics in humans
  • - Linkage
  • - Gene mapping

?
?
?
?
?
  • Gene mapping in other organisms
  • (fungi, bacteria)
  • - Extensions to Mendelian Genetics
  • - Gene mutation
  • - Chromosome mutation
  • (- Quantitative and population genetics)
  • B2900

?
?
?
?
?
4
Penetrance, expressivity and G X E
PURPOSE To provide a concise review for human
cancer risk related to low-penetrance genes and
their effects on environmental carcinogen
exposure. CONCLUSION Sporadic cancers are caused
by gene-environment interactions rather than a
dominant effect by a specific gene or
environmental exposure.
5
Mutation
  • Source of genetic variation
  • Gene Mutation (Phenotypic effects)
  • - somatic, germinal
  • Chromosome mutations (Ch. 11 prob. 1, 2)
  • - structure
  • - number

6
Mutation
  • Gene Mutation
  • a------gta Forward mutation
  • a ------gta Reverse mutation
  • 1. Somatic mutation
  • - not transmitted to progeny
  • 2. Germinal Mutation
  • - transmitted to next generation

7
Somatic Mutations
Petal colour Rr red rr white
Plant genotype Rr mutation Rr
rr
8
(No Transcript)
9
Somatic mutations
10
Germinal mutations
AA (blue) mutation Aa ? self ?
aa(white)
11
Mutant Phenotypes
  • Morphological
  • Lethal
  • Biochemical
  • Resistance
  • Conditional - DTS (David T. Suzuki)
  • (permissive and restrictive conditions)

12
Mutation Frequency
Drosophila eye-colour w ? w 4 x 10-5 per
gamete Humans Hemophilia (X-linked
recessive) 4 x 10-5 per gamete

(1 in 25,000)
It is estimated that up to 30 of cases of
hemophilia have no known family history. Many of
these cases are the result of new mutations. This
means that hemophilia can affect any family.
13
Mutation Frequency
Drosophila eye-colour w ? w 4 x 10-5 per
gamete Mutation rate for a particular gene
very low (efficient repair) but, Large number of
genes in a genome mutations occur every
generation 4 x 10-5 x 50,000 genes 2
mutations
14
Gene Mutation
  • Mutations are rare and random
  • Ultimate source of genetic variation
  • Cancer Proto-oncogene ?oncogene ? cancer
  • mutation
  • in an oncogene mutation, the activity of the
    mutant oncoprotein has been uncoupled from its
    normal regulatory pathway, leading to its
    continuous unregulated expression. ? tumor growth

15
Chromosome Mutations
  • Gene mutation detected
    genetically
  • Chromosome Mutations detected genetically and

  • cytologically
  • 1. Structure
  • 2. Number

16
Chromosome Mutations
  • 1. Structure Ch. 11 363 372
  • 2. Number Ch. 11 p. 350 - 363

17
1. Chromosome Structure
  • Karyotype
  • 1. size and number
  • 2. centromere position
  • telocentric
  • acrocentric
  • metacentric
  • submetacentric
  • acentric

(lost)
18
Chromosome Structure
  • 3. Heterochromatin pattern
  • - heterochromatin (dark)
  • - euchromatin (light)
  • 4. Banding patterns
  • a) staining Giemsa bands
  • b) polytene chromosomes (flies)

19
G-bands
20
Paint of Chr-22
21
Paint
22
Structural Abnormalities
  • Normal a b c d e f
  • 1. Deletion a c d e f
  • 2. Duplication a b b c d e f
  • 3. Inversion a e d c b f
  • 4. Translocation
  • a b c d j k g h i
    e f

23
Structural Abnormalities
  • 1. Deletions
  • deletion homozygote----gtusually lethal
  • deletion heterozygote----gt viable
  • deletion loop b
  • (pairing of a c d
  • homologues) a c d
  • deletion

24
Deletion heterozygote
deletion loop
25
Pseudodominance
  • Deletion Heterozygote
  • deletion loop b
  • (pairing of a c d
  • homologues)
  • deletion

Phenotype b
26
Deletion Mapping
Prune pn
27
Structural Abnormalities
  • Deletion notch-wing (Drosophila)
  • Phenotype
  • Genotype wing survival
  • N N normal alive
  • N N notch alive
  • N N - dead

  • (recessive lethal)

28
Genetics of Deletions
  • Reduced map distance ( chromosome shortened)
  • Recessive lethal
  • Deletion loop (detected during meiosis)

29
Structural Abnormalities
  • 2. Duplications
  • tandem duplication
  • a b b c d
  • maintain original evolve new
  • function function

30
Unequal crossing over
deletion
Tandem duplication
31
Bar Eye Mutation (Dominant)
32
Gene Duplication and Evolution
  • Gene duplication - Evolution of new function
  • Example Hemoglobin genes - duplication
  • Express in different stages
  • embryo fetus adult

33
Hemoglobin Alpha Beta Gamma ..
34
Structural Abnormalities
  • 3. Inversions - different gene order
  • - usually viable
  • a b c d e f a b e d c f a b e d
    c f
  • a b c d e f a b c d e f a b e d
    c f
  • homozygote heterozygote homozygote
  • N N N I
    I I
  • normal (N) inversion (I)

35
Cytological consequences of an Inversion Heterozyg
ote Inversion Loop
a b c d e
a d c b e
Fig. 11-21
crossover
X
Inversion Loop
36
  • Cytological consequences of an Inversion
  • Heterozygote Inversion Loop
  • Cross-over within an inversion
  • dicentric bridge (broken)
  • acentric fragment (lost)
  • deletions

37
Inversion heterozygotewith crossing over
Fig. 11-22
38
Inversion Heterozygote
  • Reduced recombination frequency
  • (suppression of crossing over)
  • Semisterile

39
4. Translocation
  • a b c d j k g h i e
    f

Translocation Heterozygote (meiosis)
N2
N1
T2
T1
40
Translocation
41
Fig. 11-24
Translocation heterozygote
42
Translocation heterozygoteAdjacent segregation
T1
N2
N1
T2
inviable
43
Translocation heterozygoteAlternate segregation
N1
N2
T1
T2
viable
44
Translocation
  • Change linkage relationships
  • (position effects)
  • Change chromosome size
  • Semisterile - unbalanced meiotic products

normal
Corn Pollen
aborted
45
Structural Abnormalities
  • Normal a b c d e f
  • 1. Deletion a c d e f
  • 2. Duplication a b b c d e f
  • 3. Inversion a e d c b f
  • 4. Translocation
  • a b c d j k g h i
    e f

46
Human Chromosomes
47
Mutation
  • Source of genetic variation
  • Gene Mutation
  • - somatic, germinal
  • Chromosome mutations (Ch. 11)
  • - structure
  • - number

?
?
48
Chromosome Mutation(2. changes in number)
  • Euploidy variation in complete sets of
  • chromosomes
  • Aneuploidy variation in parts of chromosome
  • sets

49
Euploidy
  • 1x monoploid (1 set) n
  • 2x diploid (2 sets) 2n
  • 3x triploid
  • 4x tetraploid
  • 5x pentaploid polyploid (gt 2 sets)
  • 6x hexaploid
  • n chromosomes
  • in the gametes

50
(No Transcript)
51
Polyploids
  • Autopolyploids within one species
  • Allopolyploids from different, closely
  • related species

52
Polyploids Larger than Diploids
53
Polyploids
  • Triploids 3n
  • - problems with pairing
    during
  • meiosis
  • - unbalanced gametes
  • - usually sterile
  • Applications seedless fruits, sterile fish

  • aquaculture

54
Formation of Triploids
n
3n
n
n
Polar bodies
3n
n
2n
n
n
55
Triploids (3x)
  • Why cant a triploid produce viable gametes ?

56
Fig. 11-5
57
Triploids (3x)
Gametes
  • x 1

58
Triploids
Gametes
  • x 2

viable
or
Non- viable
59
Triploids
  • Probability (2x or x gamete)
  • ( )
  • if x 10 Prob. 0.002 of viable gametes

x - 1
1
2
60
Autotetraploid
61
(No Transcript)
62
Autotetraploid
  • Doubling of chromosomes 2x----gt 4x
  • Even number of chromosomes normal meiosis
  • 2lt----gt2 segregation------gt functional gametes

63
Origin of WheatFig. 11-10
Allopolyploid
2n 14, n x 7
hybrid
2n 28 n 14
Chromosome sets A, B, D 7 7 7
7
14
Triploid
2n 42 x 7 n 21
64
Polyploidy
  • Plants speciation
  • Animals - rare (sex determination)
  • - fish (salmon)
  • - parthenogenetic animals

123 11 22 12 12
65
Plant Polyploids
66
Chromosome Mutation(changes in number)
  • Euploidy variation in complete sets of
  • chromosomes
  • Aneuploidy variation in parts of chromosome
  • sets

67
Aneuploidy
  • Nullisomics (2n - 2)
  • Monosomics (2n - 1)
  • Trisomics (2n 1)

68
(No Transcript)
69
Aneuploidy
  • Nullisomics (2n - 2)
  • - lethal in diploids
  • - tolerated in polyploids
  • Monosomics (2n - 1)
  • - disturbs chromosome balance
  • - recessive lethals hemizygous
  • Trisomics (2n 1)
  • - sex chromosomes vs autosomes
  • - size of chromosome

70
(No Transcript)
71
(No Transcript)
72
Aneuploidy
  • Non-disjunction Gametes
  • Meiosis I n 1 n - 1
  • Meiosis II n 1 n - 1
    n
  • n x n - 1 ---------gt 2n - 1
    monosomic
  • n x n 1 ---------gt 2n 1
    trisomic

73
Aneuploidy
  • Humans (live births)
  • Monosomics - XO Turner syndrome
  • - no known autosomes
  • Trisomics XXY Klinefelter sterile male
  • XYY fertile male ( X or
    Y gametes)
  • XXX sometimes normal
  • 21 Down
  • 18 Edwards
    syndromes
  • 13 Patau

74
G-bands
13
18
21
X
Y
75
Downs Births per 1000
76
(No Transcript)
77
Mutations Causing Death and Disease in Humans
  • of live
    births
  • Gene mutations 1.2
  • Chromosome mutations 0.61

78
Chromosome Mutations(Humans)
  • of spontaneous
    abortions
  • Trisomics 26
  • XO 9
  • Triploids 9
  • Tetraploids 3
  • Others 3
  • Chromosome 50
  • abnormalities

79
Chromosome Mutations
  • Comparison of euploidy with aneuploidy
  • Aneuploids more abnormal than euploids
  • likely due to gene imbalance
  • Plants more tolerant than animals to aneuploidy
    and polyploidy
  • (animal sex determination)

80
Summary
  • Mutation - gene
  • - chromosome
  • (structure, number)
  • Detecting - cytology
  • - phenotype
  • Rate of mutation - low
  • Mutation - source of genetic variation
  • - evolutionary change

genetic analysis
81
Chapter References
  • Recombination, linkage maps
  • Ch. 6 p. 148 165 Prob 1-5, 7, 8, 10,
    11, 14
  • Extensions to Mendelian Genetics
  • Ch. 14 p. 459 473 Prob 2, 3, 4, 5, 6, 7
  • Chromosome Mutations
  • Ch. 11 p. 350 377 Prob 1, 2

82
Mendelian Genetics
  • Topics
  • -Transmission of DNA during cell division
  • Mitosis and Meiosis
  • - Segregation
  • - Sex linkage (problem how to get a
    white-eyed female)
  • - Inheritance and probability
  • - Independent Assortment
  • - Mendelian genetics in humans
  • - Linkage
  • - Gene mapping

?
?
?
?
?
  • Gene mapping in other organisms
  • (fungi, bacteria)
  • - Extensions to Mendelian Genetics
  • - Gene mutation
  • - Chromosome mutation

?
?
?
?
?
?
?
Write a Comment
User Comments (0)
About PowerShow.com