Protein DNA Interactions From interactions to function prediction Sue Jones - PowerPoint PPT Presentation

1 / 32
About This Presentation
Title:

Protein DNA Interactions From interactions to function prediction Sue Jones

Description:

Protein DNA Interactions From interactions to function prediction Sue Jones Department of Biochemistry University of Sussex 20th Sept 2004 EMBL Lecture Course – PowerPoint PPT presentation

Number of Views:168
Avg rating:3.0/5.0
Slides: 33
Provided by: SueJ4
Category:

less

Transcript and Presenter's Notes

Title: Protein DNA Interactions From interactions to function prediction Sue Jones


1
Protein DNA InteractionsFrom interactions to
function prediction Sue Jones
  • Department of Biochemistry
  • University of Sussex
  • 20th Sept 2004
  • EMBL Lecture Course

2
Outline
  • Protein-DNA Interactions importance
  • Structural Data
  • Predicting DNA Binding Function
  • Alternative Method New Perspectives

3
(No Transcript)
4
Protein-DNA Interactions Importance
  • Gene expression
  • Transcription initiation (TATA binding protein)
  • RNA synthesis (RNA polymerase)
  • Transcription regulation (MAX protein)
  • DNA repair (DNA glycosylase oxidative DNA
    damage)

5
Protein-DNA Interactions Importance
  • DNA packaging (Histone H2A.e)
  • DNA replication (Polymerases, Ligases, single
    stranded binding proteins)

6
Outline
  • Protein-DNA Interactions importance
  • Structural Data
  • Predicting DNA Binding Function
  • Alternative Method New Perspectives

7
DNA
  • DNA has structural flexibility
  • Structure described by Watson Crick B-form

Feature B A
Type of helix RH RH
Diameter 2.37 2.55
Rise per bp 0.34 0.29
bp per turn 10 11
Major groove Wide, deep Narrow, deep
Minor groove Narrow, shallow Wide, shallow
B A Z
8
Structural Data
  • NDB assemble and distribute structural
    information about nucleic acids
  • 2490 structures (25/08/04)

Protein-DNA Complex Number
Double Helix 593
Single Strand 57
http//ndbserver.rutgers.edu Berman et al., 1992.
Biophys J 63 p751
9
Protein-DNA Interactions Structure
10
Protein-DNA Interactions characteristics
  • Major and minor groove binding
  • DNA-binding motifs
  • Positively charged surface areas
  • Size ASA 618Å2 - 2833Å2
  • Conformational changes
  • DNA bending
  • domain movements, quaternary changes
  • Nadassy et al., 1999 Biochemistry 38 p1999
  • Jones et al., 1999 J.Mol.Biol. 287 p877

11
Outline
  • Protein-DNA Interactions importance
  • Structural Data
  • Predicting DNA Binding Function
  • New Perspectives

12
Predicting DNA Binding Function
  • Knowing a proteins function is essential in
    understanding
  • cellular location
  • interactions
  • biochemical pathways
  • potential as drug targets
  • Prediction of protein DNA binding site given
    unbound protein structure
  • electrostatic patches
  • motifs

13
Predicting Function from Structure
  • Structural genomics filling in the gaps of
    protein structure space
  • Structures solved that have low sequence identity
    (lt 30 sequence identity)
  • Potentially little or no fold similarity to any
    currently in the PDB
  • Require algorithms to make fast reliable
    function predictions

14
Predicting DNA Binding Function
  • Easy to make matches between globally homologous
    structures
  • Method aims to identify remote matches based on
    local homology of a specific motif
  • Helix-Turn-Helix (HTH)
  • C-terminal helix - major groove binding
  • 1/3 DNA-binding protein families (16/54)

15
HTH Motif Proteins
Hin Recombinase (1hcr)
Catabolic Activator Protein (1j59)
16
HTH Motif Dataflow
120 HTH PDB Chains
NDB
PDB
Literature
PFAM
SMART
26 Hidden Markov Models
PDB
SAM-T99
Literature
Rasmol
349 HTH Chains
227 HTH Proteins
28 HMMs
3D-Templates
29 SREPS
7 HREPS
84 NI Proteins
86 NI Proteins
232 HTH Chains
30 SREPS
17
HTH Template Library
1ais
1hcr
1b9m
1eto
1hcrA160-181 1b9mA32-56 1etoA73-95 1aisB1267-1293
1jhgA68-91 1lmb331-53 1orc016-36
1jhg
1lmb
1orc
18
Template Scanning
  • Scanning template library against 3D structures
  • One template T (length n) scanned against protein
    P of length m, calculated optimal gapless
    superposition at each m-n1 possible positions in
    P using RMSD
  • Based on Kabsch (1976) Acta Cryst A. 32 p922

19
RMSD Distributions
1.6Å
Frequency
RMSD
368/8266 3.5 false positives
5/84 1.4 false negatives
20
Improving Template Specificity
  • Extending templates
  • Assessing motif accessible surface area (ASA)
  • 2 templates 61/8264 0.7 false positives
  • ASA threshold (990Å2) 38/8264 0.5 false
    positives
  • 3 false positives were actually real HTH
    proteins not previously annotated


21
New HTH Motif 1
  • DNA Methyltransferase (MGMT)
  • 110-129 C-terminal domain
  • d and e helices
  • Site directed mutagenesis

1mgtA
22
New HTH Motif 2
1fy7A
  • Histone acetyltransferase
  • 368-388 C-terminal domain
  • zinc finger N-terminal domain
  • protein-protein interactions
  • SCOP winged helix

23
New HTH Motif 3
1taq
1tau
  • Polymerase I
  • 673-700 fingers subdomain
  • DNA contacts O helix
  • New HTH precedes O helix

24
Generic Templates
25
Generic Templates
Sequence Full sequence HMMs (0.001)
Structure RMSD lt 1.6
26
Structural Genomics Targets
  • Scanned template library against 30 target
    structures from MCSG

Isocitrate lyase regulator transcription factor.
(Zhang et al., J. Biol. Chem. 2002)
27
Summary
  • Method combined structural data from NDB and PDB
    with sequence data from PFAM and SMART
  • Structural template library of 7 HTH motifs
  • RMSD threshold from optimal superposition
  • Hit rate of 88 false positive rate of 0.5
  • Recognition across families
  • Template method independent of global fold
    similarity
  • Potential to identify new DNA binding HTH motifs

28
Online Function Prediction
http//www.ebi.ac.uk/thornton-srv/databases/PDNA-p
red
29
Outline
  • Protein-DNA Interactions importance
  • Structural Data
  • Predicting DNA Binding Function
  • Alternative Method New Perspectives

30
Alternative Statistical Model
Statistical Models for discerning protein
structures containing the DNA-binding HTH motif.
Mclaughlin and Berman, J. Mol. Biol. 2003 p43.
  • Decision tree model to identify key structural
    features
  • geometric measurements of recognition helix (RH)
    helices beta sheets preceding and following
  • Key features
  • High solvent accessibility of RH
  • Hydrophobic interaction between RH 2nd helix
    preceding
  • Predicting HTH motifs within the PDB
  • 98 accuracy 0.7 false positive rate
  • Predicted new HTH motifs

31
Future Perspectives
  • Extend method to other DNA binding motifs HLH,
    HhH, ?-ribbon
  • Using electrostatic potentials with motifs to
    improve method
  • Spatial templates for proteins that dont use
    discrete motifs for DNA recognition

32
Acknowledgements
  • Janet
  • Thornton
  • Jonathan
  • Barker
  • Helen
  • Berman
  • Hugh
  • Shanahan

Mario Garcia Carles Ferrer
  • Department of Energy USA
  • European Bioinformatics Institute
  • Rutgers The State University
Write a Comment
User Comments (0)
About PowerShow.com