Temporal variations of the circumstellar environment of the Mira star V Oph - PowerPoint PPT Presentation

About This Presentation
Title:

Temporal variations of the circumstellar environment of the Mira star V Oph

Description:

Title: Slide 1 Author: Keiichi Ohnaka Last modified by: mgomez Created Date: 2/3/2005 3:50:18 PM Document presentation format: On-screen Show (4:3) Company – PowerPoint PPT presentation

Number of Views:76
Avg rating:3.0/5.0
Slides: 23
Provided by: Keiichi
Learn more at: http://www.eso.org
Category:

less

Transcript and Presenter's Notes

Title: Temporal variations of the circumstellar environment of the Mira star V Oph


1
Temporal variations of the circumstellar
environment of the Mira star V Oph
  • Keiichi Ohnaka
  • Max-Planck-Institut für Radioastronomie
  • ESO Santiago Seminar
  • 10 January 2008

2
Asymptotic Giant Branch (AGB)
Late evolutionary stage of low- intermediate
mass stars (1-8 M8 )
To Planetary Nebulae
AGB
Teff 3000K L 103 -- 104 L8
3M8
Main sequence
1M8
3
2 Rstar 600--800 R8(3--4AU)
200--400 R8(1AU Earths Orbital Radius)
0.01--0.1 R8 (Earths radius)
Circumstellar shell Mass loss, Dust
formation
Stellar surface
Hydrogen shell burning 4 H ? He
Photosphere
C/O core
Convective mixing
To interstellar space
He
H
Helium shell burning (3 4He ? 12C) Thermally
unstable, run-away reaction Thermal pulse or
Helium shell flash
Carbon mixed up to surface by convection
O-rich photosphere ? C-rich (Carbon Star)
4
Why AGB stars are important?
1. Majority of the stellar population
2. Nucleosynthesized material mixed to the
stellar surface
  • O-rich photosphere ? C-rich photosphere
  • Carbon stars
  • (C2, CN, HCN, C2H2 features in optical/IR spectra)

s-process elements (Ba, La, Eu, Tc, etc)
3. Enrichment of ISM via mass loss
Major Dust Factory, together with
supernovae
5
Mass loss mechanism in AGB stars
H
Driving mechanism not well understood
Mass-loss rates 10-810-5 M8/yr
Dust Molecule forming region close to
the star
PN, Cats Eye Nebula
Morphology change from AGB to planetary
nebulae How and at what stage?
? High Angular Resolution ? IR interferometry

6
How an IR interferometer works
Spatial resolution l/Bp N band (813 mm) Bp
50 m ? 20 mas 200 m ? 5 mas K band (2
mm) Bp 50 m ? 4 mas 200 m ? 1
mas Diffraction Limit (8m) N band ? 0.3 K
band ? 60 mas
Optical Path Difference
Bp
B
Beam combiner
  • 2 Telescopes
  • Only visibility
  • (Amplitude of Fourier
  • transform of I(x,y)
  • 3 Telescopes
  • Imaging OK,
  • but not easy

Delay line to compensate OPD
7
IR interferometry of Mira stars
Mira variables Large
variability amplitude 9 mag (in V)
Expanding dust shell
Warm Molecular layers, or MOLsphere,
10002000K, 25 Rstar
Dust formation
Photosphere
Spectro-interferometry
Spatial Spectral resolution
Near-IR (JHK)
Mid-IR (N band)
8
MIDI observation Spectrally dispersed fringes
extracted from raw data
8.0 mm
13.3 mm
9
MIDI VINCI observations of O-rich Mira RR Sco
Dust shell
MOLsphere (H2O, SiO, CO)
Photosphere
10
Multi-epoch MIDI observations of the C-rich Mira
star V Oph
C-rich Mira stars
Circumstellar material close to the star ? Dust
or gas ? (or both?)
Little mid-IR interferometry on optically bright
(not so dusty) C-rich Miras ? V Oph


C2H2 n4
n5 band (lt 9 mm) n5 band (gt 11 mm)
MIDI Spectro-interferometry
Dust Amorphous Carbon SiC
(11.3 mm)
11
Multi-epoch MIDI observations of the C-rich Mira
star V Oph
UT2-UT3
UT2-UT4
UT1-UT4
N-band visibilities show temporal variations

Same Bp P.A.
12
Temporal variation of 813mm angular size of V Oph
N-band Uniform Disk
Diameter
The object appears the smallest at minimum light
(when faintest).
N-band angular sizes are remarkably larger than
the star itself.
13
Interpretation of MIDI data on V Oph (1) Dust
shell model
  • Dust Shell Modeling
  • Optically thin dust shell
  • (Amorphous carbon SiC)
  • ? Monte Carlo code
  • (Ohnaka et al. 2006)
  • SED N-band Visibility fitting

Expanding dust shell
Dust shell Amorphous carbon (featureless) SiC
(11.3 mm)
Inner boundary 2.5 Rstar ? Tdust 1600K
? Condensation Temperature
14
Dust shell model compared to MIDI observations
N-band Uniform Disk
Diameter
N-band spectra
15
Interpretation of MIDI data on V Oph (2) C2H2
layers dust shell (Ohnaka et al. 2007, AA,
466, 1099)
Optically thick emission from C2H2
n4 n5 band (lt 9 mm) n5
band (gt 11 mm)
  • (ad hoc) Modeling
  • Hot and cool C2H2 layers
  • (constant temperatures, densities)
  • ? Line opacity calculated
  • analytically
  • (Band model, Tsuji 1984)
  • Optically thin dust shell
  • (Amorphous carbon SiC)
  • ? Monte Carlo code
  • (Ohnaka et al. 2006)

Expanding dust shell
C2H2 gas
Dust shell Amorphous carbon (featureless) SiC
(11.3 mm)
Inner boundary 2.5 Rstar ? Tdust 1600K
? Condensation Temperature
16
Modeling for 3 epochs
Optically thick emission from C2H2 ? Angular
size larger ( lt 9 mm gt 12 mm)
Extended, dense C2H2 layers in C-rich Mira stars

H2O layers in O-rich Mira stars
17
Model for post-maximum (phase 0.18)
Photospheric size
18
Phase dependence of the C2H2 layers and the dust
shell
C2H2 Column Density
Dust Optical Depth
C2H2 Radius
19
How to explain the phase dependence
Series of snapshots of a dynamical
atmosphere (shock wave passage), Nowotny et al.
(2005)
dM/dt 10-6 M8/yr
Post-Maximum
dM/dt 10-8 M8/yr (V Oph)
C2H2 layers dense, extended Dust opacity
high
Shock front
C2H2 formation
Dust formation
C2H2 layers less dense, small
Dust opacity low
Minimum
Diluted
Diluted
Post-Minimum
C2H2 layers dense,
extended Dust opacity high
C2H2 formation
New dust formation
20
Conclusion Outlook
  • C-rich version of the warm molecular layers
    (C2H2)
  • Phase dependence of the mid-IR angular size
  • The object appears the smallest at minimum
    light.
  • Observed N-band visibilities and spectra can be
    explained by
  • the C2H2 layers dust shell model.
  • Dust formation zone not well constrained
    (baselines were too long).
  • Better (u,v) coverage with ATs.
  • O-rich Miras MIDI/AT program on 3 Miras
  • C-rich Miras MIDIVISIRAMBER program on 1 Mira
  • Non-Mira AGB stars (majority of AGB stars)
  • Very small variability amplitudes,
  • but substantial mass loss

21
Temporal variation of N-band angular size of V Oph
N-band Uniform Disk Diameter
N-band spectra
22
MIDI VINCI observations of O-rich Mira RR Sco
  • Warm molecular layer makes the star appear
    larger in MIR than in NIR

1400K, 2.3 R, column densities 1020--1021
cm-2
(Large-amplitude pulsation may explain the
formation of warm H2O layers)
  • Dust shell emission is responsible for the size
    increase beyond 10 mm

silicate 20, corundum 80
Inner radius 7--8 R, Tin 700--800 K,
Write a Comment
User Comments (0)
About PowerShow.com