Symbiotic bacteria in animals - PowerPoint PPT Presentation

About This Presentation
Title:

Symbiotic bacteria in animals

Description:

Polyketides used as anti-tumor drugs Why are vertically transmitted symbionts rare in vertebrates? Other animal phyla studied have maternally transmitted symbionts, ... – PowerPoint PPT presentation

Number of Views:73
Avg rating:3.0/5.0
Slides: 49
Provided by: NancyM154
Category:

less

Transcript and Presenter's Notes

Title: Symbiotic bacteria in animals


1
Symbiotic bacteria in animals
  • Oct 3 2006
  • Nancy Moran
  • Professor, Ecology and Evolutionary Biology

Reading The gut flora as a forgotten organ by A.
OHara and F Shanahan EMBO Reports. 2006
2
What is symbiosis?
  • Term typically used for a chronic association of
    members of more than one genetic lineage, without
    overt pathogenesis
  • Often for mutual benefit, which may be easy or
    difficult to observe
  • Exchange of nutrients or other metabolic
    products, protection, transport, structural
    integrity

3
Microbes in animal evolution
  • Bacteria present by 3.9 bya, Archaea and
    Eukaryota by gt2 bya
  • The Earth is populated by ecologically diverse
    microbes
  • Animals appear about 1 bya
  • Animals evolved in microbial soup
  • Innate immune system probably universal among
    animal phyla pathogenic infection was a constant
    selection pressure
  • But animals also evolved codependence on
    microbes, some of which are required for normal
    development and reproduction

4
evolutionary innovations through symbiosis
examples
  • Eukaryotic cell (mitochondria)
  • Photosynthesis in eukaryotes (plastids)
  • Colonization of land by plants (mycorrhizae)
  • Nitrogen fixation by plants (rhizobia)
  • Animal life at deep sea vents (chemoautotrophic
    life systems)
  • Use of many nutrient-limited niches by animal
    lineages

5
Why do hosts and symbionts cooperate so often?
  • Persistent association allows both to increase
    their persistence and replication.
  • Coinheritance
  • Long-term infection
  • Intimate metabolic exchange generating immediate
    beneficial feedback

6
Symbiosis- main variables
  • Route of infection (maternal, horizontal,
    mixture)
  • Mechanisms of benefiting or exploiting hosts
  • Location of symbionts in host body
  • intracellular, between cells, in specialized
    organ or in other tissues, within gut lumen, etc.
  • Molecular mechanisms of invading host tissues or
    cells similarities and differences between
    symbionts and pathogens

7
Routes of transmission
  • Vertical (parent to offspring)
  • Horizontal
  • May live in the environment (outside hosts), or
    not
  • Mixture of vertical and horizontal
  • Eg acquire from other individuals in the same
    family or colony (termites, humans )

8
  • Vertical transmission (parent to offspring)
  • Infection of eggs, seeds, embryos, or babies
  • Usually maternal only
  • Has evolved in many invertebrate symbioses with
    bacteria, viruses and fungi
  • Can be transovariolar (within the mothers body)
    or some other route (e.g. fecal-oral for gut
    inhabitants)

9
Ways that vertically transmitted microbes can
increase in frequency
  • Increase host survival reproduction (mutualism)
  • Reproductive manipulation
  • Turn presumptive male hosts into females
  • Cause all-female progeny so that all offspring
    are carriers (son-killers)
  • Cause hosts to be parthenogenetic (all female)
  • Cytoplasmic incompatibility infected males
    sterilize uninfected females
  • All of these are known to occur--caused by
    bacterial symbionts in insects Wolbachia and
    spiroplasmas

10
Ways that vertically transmitted microbes can
increase in frequency
  • Increase host survival reproduction (mutualism)
  • Very common
  • Why might vertical transmission be associated
    with mutualistic effects on hosts?
  • Most famous cases are the lineages leading to
    organelles
  • Mitochondria evolved from the alpha-Proteobacteria
    about 2 billion years ago
  • Chloroplasts evolved from cyanobacteria about 1
    billion years ago

11
Vertically transmitted symbiont can ultimately
fuse with the host to form a super-organism
--mutually obligate relationship --very unlike
pathogens
Eukaryotic genomes are littered with hundreds of
genes from mitochondria and plastids--now
apparent from plant and animal genome sequences.
12
(Phylogenetic evidence for gene transfer from
organelles)
Cyanobacteria Cyanobacteria Eukaryote-
Plant Cyanobacteria Bacteria Bacteria Bacteria Ba
cteria Eukaryote-protozoan Eukaryote-protozoan Euk
aryote-animal Eukaryote-fungal
e.g. Arabidopsis genome has gt1000 genes from
cyanobacteria
13
Vertically transmitted bacteria in animal
hosts--2 examples
  1. Insect-nutritional mutualists (aphids and
    Buchnera)
  2. Symbionts providing defense against natural
    enemies of hosts

14
Beneficial microbes in animal hosts--examples
  • Insect-nutritional mutualists (aphids Buchnera)
  • Many invertebrates have specialized
    intracellular associations with bacteria that
    make nutrients
  • Examples marine bivalves, leeches, many insects

15
Tree of Life, N. Pace
16
Aphids-Buchnera
  • Intracellular bacteria in specialized host cells
  • Vertically transmitted-mother to offspring
  • Infection dates to gt100 million years
  • Rather closely related to E. coli, but genome
    much reduced (only 600 of 4000 ancestral genes
    retained)
  • Provides nutrients to host, allowing use of a
    diet that otherwise would be inadequate.

17
maternal bacteriocytes containing symbionts
late embryos
early embryos with symbionts visible
1 mm
J. Sandström
18
Buchnera aphidicola within pea aphid bacteriocyte
1mm
J. White
19
Aphid eggs containing Buchnera from mother
0.5 mm
A. Mira
20
-gtStrict vertical transmission since ancient
infection of ancestral host
21
Schizaphis graminum on barley
22
trp plasmid in Buchnera (Schizaphis graminum)
genomic adaptation to make more nutrients for
hosts
ori
chorismate
trpEG plasmid 14.3 kb
ori
anthranilate synthase
ori
ori
anthranilate
tryptophan
chromosome
trpD
trpA
trpB
trpC(F)
Lai, Baumann Baumann PNAS 1994
23
The Buchnera gene set (570 genes) is a subset of
that of E. coli (4500 genes)
Shigenobu et al 2000 Nature
24
Essential amino acid biosynthetic pathways
argA argB argC argD argE carAB
argF argG argH Glutamate---gt ---gt ---gt ---gt
---gt Ornithine ---gt ---gt ---gt ---gt ARG
ilvHI ilvC ilvD ilvE Pyruvate ---gt ---gt ---gt
---gt VAL ilvA
ilvHI ilvC ilvD ilvE Threonine ---gt
a-Ketobutyrate ---gt ---gt ---gt ---gt ILE
Pyruvate ilvHI ilvC ilvD leuA leuCD
leuB ilvE Pyruvate ---gt ---gt ---gt ---gt ---gt
---gt ---gt LEU aroH aroB
aroD aroE aroK aroA aroC PEPErythrose ---gt ---gt
---gt ---gt ---gt ---gt ---gt Chorismate 4-Phosph
ate pheA pheA hisC
Chorismate ---gt ---gt ---gt PHE
trpEG trpD trpC trpC trpAB
Chorismate ---gt ---gt ---gt ---gt ---gt TRP
thrA asd thrA thrB
thrC Aspartate ---gt ---gt ---gt Homoserine ---gt
---gt THR metB metC metE
Homoserine ---gt ---gt ---gt MET
thrA asd dapA dapB dapD dapC dapE dapF
lysA Aspartate ---gt ---gt ---gt ---gt ---gt ---gt
---gt ---gt ---gt LYS hisG
hisI hisA hisHF hisB hisC hisB hisD PRPP ATP
---gt ---gt ---gt ---gt ---gt ---gt ---gt ---gt HIS
Nonessential amino acid biosynthetic pathways
tyrA tyrA hisC Chorisimate ---gt ---gt
---gt TYR proB proA proC Glutamate
---gt ---gt ---gt PRO
serA serC serB 3-Phosphoglycerate ---gt ---gt
---gt SER glyA Serine ---gt GLY
cysE cysK Serine ---gt ---gt CYS
gtBD/gdhA 2-oxoglutarate ---gt GLU
glnA Glutamate ---gt GLN
aspCtyrB Oxaloacetate ---gt ASP
asnB/asnA Aspartate ---gt ASN
alaB/avtA Pyruvate ---gt ALA
GENE / product present in Buchnera GENE /
product absent in Buchnera
(based on Shigenobu et al 2000)
25
But other symbionts appear not to have not left a
legacy of many genes transferred to host genomes,
at least not in animals so far sequenced (e.g.,
Drosophila)
Eukaryotic genomes contain many genes from
organelles, apparent from eukaryotic genome
sequences.
Why this difference?
26
Heritable mutualistic bacteria (maternal
transmission)
Not much like pathogens-host has taken over
mechanisms of invading host cells and has
coevolved to maintain the association
  • Mitochondria
  • Chloroplasts
  • Obligate nutritional symbionts (e.g. Buchnera
    in aphids)
  • Facultative maternally transmitted symbionts

Much more like pathogens--have to invade naïve
hosts, overcome immune responses, but typically
benefit hosts
27
Similarities between facultative symbionts and
pathogens at the molecular level
  • Use of toxins that target eukaryotic cells and
    manipulate the cell cycle
  • Use of secretion systems that deliver effector
    molecules to the host cytoplasm, sometimes enable
    host cell invasion
  • Eg Type III Secretion Systems used by Salmonella
    and Yersinia pestis (mammalian pathogens) and by
    mutualistic symbionts of animals and plants
  • Similar trends in genome evolution proliferation
    of insertion sequences (transposable elements)
    and inactivation of many ancestral genes

28
Mutualistic effects of facultative symbionts on
aphids
29
Hamiltonella defensa confers protection against
parasitoid wasps Kill developing parasite larva
within aphid body Increases aphid survival
reproduction
Oliver, et al. PNAS 2003 2005
30
Other cases of vertically transmitted symbionts
providing defense Polyketides produced by
symbionts of beetles
  • Many drug candidates from marine and terrestrial
    invertebrates are suspected metabolites of
    uncultured bacterial symbionts.
  • Polyketides used as anti-tumor drugs

31
Symbionts providing defense Polyketides
produced by symbionts of beetles and sponges
Biosynthesis is encoded in a 75kb acquired
chromosome fragment Used as anti-tumor drugs
J Piel 2002 PNAS 99 14002
32
Why are vertically transmitted symbionts rare in
vertebrates?
  • Other animal phyla studied have maternally
    transmitted symbionts, often originating hundreds
    of times (eg arthropods, molluscs)
  • Acquired immunity system prohibits this type of
    symbiosis?
  • Vertebrates typically have very large numbers of
    bacterial taxa associated with surfaces and gut

33
Horizontally transmitted or environmentally
acquired symbionts
  • Common and often clearly mutualistic
  • Examples
  • squid and Vibrio fischeri symbionts reacquired
    every day from seawater, special signalling
    system for recognizing the right bacteria
  • Termite gut microbes
  • Mammalian gut microbes
  • Mouth-in habiting bacteria

34
Commensal bacteria in mammalian guts- Case of
humans
In a person, bacterial cells outnumber somatic
and germ cells by gt10 fold Human intestinal
microbiota 500-1,000 different species,
aggregate biomass of 1.5 kg per person Number
of genes in the human microbiome may exceed
number of human genes by 100-fold
Xu Gordon, PNAS, 2003
35
Recent research on the human gut
microbiota Summarized in A. OHara and F.
Shanahan, The gut flora as a forgotten organ
36
Bacteria in mammalian gut
  • Infected during birth
  • Big change in community at weaning, from mostly
    aerobes to mostly anaerobes
  • Differences between individuals that reinstate
    themselves following antibiotic treatment
  • Some common bacterial types across individuals
  • Some species with specialized communities

37
Digestive tract of a cow
38
Symbiotic bacteria in mammalian guts- Bacteroides
thetaiotaomicron in Mouse JI Gordon lab
(Washington University)
  • Normally infection of the gut occurs at birth
  • Gnotobiotic germ-free from birth
  • Infection of gnotobiotic mice with single strain
    of B. thetaiotaomicron (LV Hooper et al 2001
    Science)
  • Infection had major effects on expression of gt100
    mouse genes including genes modulating
    fundamental intestinal functions, some of these
    are affected similarly in zebra fish
  • Major effects on development of intestine,
    vascularization

39
Commensal bacteria in mammalian guts- Bacteroides
thetaiotaomicron
  • DEVELOPMENT
  • induction of capillary networks in intestine,
    etc.
  • NUTRITION
  • Absorption and processing of carbohydrates
    lipids germ-free mice require 30 more calories
  • IMMUNITY AND DEFENSE
  • Neutralization of dietary toxins
  • Mucosal barrier protects against infectious
    microbes
  • Bacterial surface molecules affect immune system
    functioning
  • and development

40
Intestinal vascularization of gut is dependent
on presence of bacteria
Germ-free conventional B.
thetaiotamicron only
41
Commensal bacteria in mammalian guts- Bacteroides
thetaiotaomicron genome
  • Gene content of the bacterium reflects its
    nutritional role esp in carbohydrate metabolism
  • 172 glycosylhydrolases for breaking down
    carbohydratess into easily absorbed sugars, many
    of these are secreted from bacterial cells)
  • Clear capacity for continued gene turnover and
    acquisition of new DNA and genes (phage, etc. ).

Symbionts, particularly consortia of commensal
bacteria, can be a means of acquiring novel
metabolic functions in eukaryotes
42
Undigested carbohydrate polymers bind to surface
of Bt Much of Bt genome is devoted to making
binding proteins plus surface-localized
glycohydrolases that liberate simple sugars from
the carbohydrates. Sugars available to be used
by host, Bt, other bacteria
43
B. thetaiotamicron upregulates a large set of its
genes upon colonization of the mouse intestine
64 enzymes for digesting polysaccharides in
dietary fiber Xylan, pectin, arabinose degrading
enzymes. Many of these are secreted by the
bacteria. Expression (transcription) is
affected by mouse diet. Shows adaptation to the
gut-bound lifestyle. Host mucous provides an
endogenous source of glycans used by Bt when
dietary supply is low. Bt embed in the mucosal
layer (next slide)
44
Scanning electron microscope images showing
distribution of B. thetaiotaomicron within its
intestinal habitat. (A) Low-power view of the
distal small intestine of B. thetaiotaomicron
monoassociated gnotobiotic mice, showing a villus
(arrow) viewed from above. (B to D) Progressively
higher power views showing B. thetaiotaomicron
associated with luminal contents (food particles,
shed mucus) arrows in (B) and (C) and embedded
in the mucus layer overlying the epithelium
boxed region in (C), larger image in (D). Scale
bars, 50 µm (A), 5 µm (B) and (C), 0.5 µm (D).
Sonnenberg et al 2005 Science 3071955
45
B. thetaiotamicron in mammalian guts
  • Represents an extended phenotype--uses genes for
    host benefit and regulates them adaptively in
    response to host environment (diet)
  • Retains capacity to acquire new genes, based on
    presence of integrases, phage different strains
    differ in gene content.

46
Methanogens (Archaea) use hydrogen gas
(generated by carb digestion) to make methane,
thereby increasing efficiency of energy
conversion Manipulation of microbial gut
community could lower propensity for obesity?
47
Consequences of interfering with gut community?
  • Antibiotics-eradicate most bacteria in gut,
    followed by unusual progression back to original
    state
  • Gut bacteria are environmentally acquired--Overly
    hygienic conditions-may not develop full
    diversity of gut community
  • Association with Irritable Bowel Syndrome,
    Crohns disease
  • May affect development of immune system
  • Consequences for digestive efficiency,
    metabolism, tendency to fat deposition, obesity

48
Methanobrevibacter smithii (Archaea) Methanogen De
termines efficiency of caloric uptake
"Changes in microbial ecology prompted by Western
diets, and/or differences in microbial ecology
between individuals living in these societies,
may function as an 'environmental' factor that
affects predisposition toward energy storage and
obesity. Backhad et al. Proc Natl Acad Sci USA
2004 101 15718-15723
Write a Comment
User Comments (0)
About PowerShow.com