Mathematics for Economists - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

Mathematics for Economists

Description:

General solution is the sum of the homogeneous and the particular solution: y = yh yp ... Homogeneous form. d2y/dt2 a1dy/dt a2y = 0 ... – PowerPoint PPT presentation

Number of Views:59
Avg rating:3.0/5.0
Slides: 26
Provided by: ster8
Category:

less

Transcript and Presenter's Notes

Title: Mathematics for Economists


1
Mathematics for Economists
  • Differential Equations
  • HLMRS 21-23

2
Difference/differential equations
  • Difference equation e.g. ?(yt) yt1 - yt
    f(y,t) discrete time
  • Differential equation e.g. dy/dt g(y,t)
    continuous time
  • Properties of both equations are similar. Here we
    are interested in finding functions that solve
    the equations
  • The general solution is sum of the solution to
    the homogeneous form plus the steady state
    solution

3
Classification
  • Order whats the highest order of difference?
  • Autonomous/nonautonomous does (not) depend on
    time explicitly
  • Linear or nonlinear
  • Solution a function that makes the difference
    equation true. Example dy/dt 3y 2
    solution y C exp(3t) - 2/3. So the
    warning multiple solutions exist (C can take any
    value in general)!

4
Contents
  • Linear, First-Order Differential Equations
    autonomous and nonautonomous
  • Nonlinear, First-Order Differential Equations
  • Linear, Second-Order Differential Equations
  • Next time Systems of Differential Equations

5
Linear First-Order Differential Equations
  • Linear autonomous first-order differential
    equation dy/dt ay b
  • General solution is the sum of the homogeneous
    and the particular solution y yh yp
  • yh is the solution to the homogeneous equation
    dy/dt ay 0
  • yh(t) C exp(-at)
  • yp is the solution of dy/dt 0 yp b/a
  • The process converges to yp if and only if a gt 0

6
Proof of the homogeneous solution
  • dy/dt / y -a
  • Integrating both the left and right-hand side
    with respect to time gives for the left-hand
    side
  • ? dy/dt / y dt ? 1/y dy ln y c2
    and for the right-hand side at c1
  • y exp(-at c1 - c2). Use C exp(c1 - c2)

7
Example capital accumulation
  • dK/dt I - ?K. I is constant. Solve for K(t)
  • Homogeneous form dK/dt ?K 0
  • Solution is Kh C exp(-?t)
  • Particular solution Kp I / ?
  • So K(t) C exp(-?t) I / ?
  • Initial conditions on K (say K0) give a
    restriction on C K0 C I / ?,
    so C (K0 I / ?)

8
Example
  • Solve dy/dt 0.1y - 1, given y(0) 5
  • Homogeneous form yh(t) C exp(0.1t)
  • Steady state yp 10
  • General solution y(t) C exp(0.1t) 10
  • y(0) 5 C 10, so C -5
  • y(t) -5 exp(0.1t) 10

9
Convergence to the steady state
  • y(t) C exp(-at) b/a, and yp b/a
  • So y(0) C exp(-at0) b/a, let t0 0
  • C (y0 - b/a) exp(at0) (y0- b/a)
  • y(t) (y(0) yp) exp(-at) yp
  • If t goes to infinity, y(t) goes to yp for a gt 0
  • In the example of the capital stock we have K(t)
    (K0 I / ?) exp(-?t) I / ?. So there is
    convergence because the depreciation rate is
    positive

10
Convergence example
  • Debt grows as a percentage of GDP
    dD/dt b Y. Income grows at a rate
    dY/dt / Y g. We assume Y(0) Y0, D(0)
    D0. Interest payments are z(t) r D(t) / Y(t)
  • Y(t) Y0 exp(gt), so dD/dt bY0 exp(gt)
  • Integrating both sides D(t) bY0 exp(gt)/g C.
    C (D0- (b/g) Y0)
  • So z(t) r (D0/Y0) exp(-gt) r (b/g)
    (1-exp(-gt)). Limit value r (b/g)

11
Nonautonomous equations
  • dy/dt a(t) y b(t)
  • Solution gets more complicated
  • y(t) exp(-A(t)) ?0t exp(A(t)) b(t)dt C
  • With A(t) ? a(t) dt

12
Example
  • Solve dy/dt - 2ty bt
  • y(t) exp(-A(t)) ?0t exp(A(t)) b(t) dt C
  • A(t) ? a(t) dt - ?2t dt -t2
  • exp(A(t)) dy/dt - 2ty exp(A(t)) bt
  • exp(-t2) dy/dt - 2ty exp(-t2) bt
  • d(exp(-t2)y)/dt exp(-t2) bt
  • Integration exp(-t2) y ? exp(-t2) bt dt
  • y(t) exp(t2) ? exp(-t2)bt dt C

13
Example technological change
  • y (a bk) t½
  • We have dk/dt sy, so dk/dt - sbt ½k sat ½
  • k(t) exp(-A(t)) ?0t exp(A(t)) b(t)dt C
  • So the integrating factor is
    A(t) -?sbt ½dt -2/3 sbt3/2
  • dexp(-2/3sbt 3/2)k / dt sa t ½
    exp(-2/3sbt3/2)
  • So we get
    exp(-2/3sbt 3/2)k sa ? t ½
    exp(-2/3sbt3/2) dt C
  • Finally we get by integration
  • k(t) -a/b C exp(2/3 sbt3/2)

14
Nonlinear, First-order Differential Equations
  • dy/dt g(y) with y(t0) y0
  • Example dy/dt y(1 - y)
  • An equilibrium point is stable if the derivative
    dy/dt / dy is negative in that point
  • Take the example two equilibria y 0 and y 1.
    dy/dt / dy 1 - 2y is positive at y 0 and
    negative at y 1

15
Example Neoclassical Growth
  • y f(k), y Y / L, k K / L, f(.) gt 0, f(.)
    lt 0
  • dK/dt sY, s savings ratio
  • dk/dt d(K/L) / dt dK/dt / L k dL/dt / L
  • Let n dL/dt / L
  • dk/dt sf(k) nk. Steady state y/k n/s
  • Two equilibria the steady state and y 0
  • dk/dt /dk sf(k) n, so d2(dk/dt)/dk2 sf(k)
    lt 0. Positive steady state is stable

16
Neoclassical Growth
dk/dt
f(k)
Slope n/s f
dk/dt sf(k) - nk
k
k
0
k
0
k
17
Linear, Second-Order Differential Equations
  • d2y/dt2 a1dy/dt a2y b
  • Again y yh yp, where yp is easy b/a2
  • Characteristic equation r2 a1r a2 0
  • yh(t) C1 exp (r1t) C2 exp(r2t) if r1?r2
  • yh(t) (C1 C2t) exp(rt) if r1 r2
  • Forget about the complex roots!
  • Convergence needs negative real parts of the roots

18
Homogeneous form
  • d2y/dt2 a1dy/dt a2y 0
  • Solution to first-order equations is of the form
    y(t) A exp(rt)
  • dy/dt rA exp(rt) and d2y/dt2 r2A exp(rt)
  • d2y/dt2 a1dy/dt a2y
    A exp(rt) (r2 a1r a2)
  • Ruling out A 0 we need to find solutions to r2
    a1r a2 0, the characteristic equation

19
Example
  • Solve 4 d2y/dt2 - 8 dy/dt 3 y 0
  • Characteristic equation r2 - 2r 3/4 0
  • So r1 ½ and r2 3/2
  • yh(t) C1 exp(t/2) C2 exp(3t/2)

20
Three classes of solutions
  • If a12 - 4a2 gt 0 two real distinct roots
    yh C1 exp(r1t) C2 exp(r2t)
  • If a12 - 4a2 0 real and equal roots
    yh C1exp(rt) C2 t exp(rt)
  • If a12 - 4a2 lt 0 complex roots
    yh A1exp(ht) cos vt A2
    exp(ht) sin vt
  • Note that r1,2 (-a1 ?(a12 - 4a2))/2 are the
    roots of the so-called characteristic equation
    r 2 a1r a2 0. Compute h
    -a1/2. v (?4a2 - a12)/2. We do
    not discuss complex roots any further

21
Particular solution example
  • 4 d2y/dt2 - 8 dy/dt 3 y 9
  • Steady state yp 3
  • yh(t) C1 exp (t/2) C2 exp(3t/2)
  • y(t) C1 exp (t/2) C2 exp(3t/2) 3
  • Suppose we know that y(0) 15 and dy(0)/dt
    10. We get C1 C2 3 15. Differentiate the
    solution dy(t)/dt C1/2 exp(t/2) 3C2
    exp(3t/2), so C1/2 3C2/2 10. This gives
  • y(t) 8 exp (t/2) 4 exp(3t/2) 3

22
Steady State and Covergence
  • In case of real roots of the characteristic
    equation, convergence of the differential
    equation requires negative real roots. This is
    intuitive from the solution
  • yh(t) C1 exp (r1t) C2 exp(r2t) if r1?r2
  • yh(t) (C1 C2t) exp(rt) if r1 r2

23
Linear, Second-Order Differential Equation with a
Variable Term
  • d2y/dt2 a1dy/dt a2y b(t)
  • Method of undetermined coefficients!
  • Case 1 b(t) is a polynomial of order n pn(t),
    assume that
    yp Antn An-1 tn-1 A1 t A0
  • Case 2 if b(t) is of the form exp(at) pn(t),
    assume
    yp exp(at) (Antn An-1 tn-1 A1
    t A0)

24
Example (1)
  • d2y/dt2 3 dy/dt - 4 y t2
  • Homogeneous form characteristic equation r2 3r
    4 0 gives r1 -4, r2 1, so yh(t) C1
    exp(-4t) C2 exp(t)
  • Particular solution. Guess
    yp A2t2 A1t A0. So dyp/dt 2A2t A1,
    d2yp/dt2 2A2
  • 2A2 3(2A2t A1) - 4(A2t2 A1t A0) t2

25
Example (2)
  • 2A2 3(2A2t A1) - 4(A2t2 A1t A0) t2
  • Rearranging this expression in terms
  • -(4A2 1)t2 (6A2 - 4A1)t
    (2A2 3A1- 4A0) 0 has to hold for all t
  • So A2 -1/4 A1 -3/8, A0 -13/32
  • y(t) -1/4 t2 3/8 t -13/32 C1 exp(-4t) C2
    exp(t)
Write a Comment
User Comments (0)
About PowerShow.com