Electrochemistry - PowerPoint PPT Presentation

1 / 57
About This Presentation
Title:

Electrochemistry

Description:

1. Electrochemistry. Chapter 20. 2. Half-reaction method...remember? Example ... Use lowest common multiple to make both equivalent in number of electrons ... – PowerPoint PPT presentation

Number of Views:190
Avg rating:3.0/5.0
Slides: 58
Provided by: cla5
Category:

less

Transcript and Presenter's Notes

Title: Electrochemistry


1
Electrochemistry
  • Chapter 20

2
Half-reaction methodremember?
  • Example
  • Al(s) Cu2(aq) ? Al3(aq) Cu(s)
  • Oxidation Al(s) ? Al3(aq) 3e-
  • Reduction 2e- Cu2(aq) ? Cu(s)
  • Use lowest common multiple to make both
    equivalent in number of electrons
  • Oxidation ? multiply by 2
  • 2Al(s) ? 2Al3(aq) 6e-
  • Reduction ? multiply by 3
  • 6e- 3Cu2(aq) ? 3Cu(s)
  • Collate (electrons cross out)
  • Net reaction
  • 2Al(s) 3Cu2(aq) ? 2Al3(aq) 3Cu(s)
  • DOES EVERYTHING BALANCE?
  • (Make sure to balance after every step!)

3
In acidic milieu
  • Fe2(aq) MnO4-(aq) ? Fe3(aq) Mn2(aq)
  • Oxidation
  • Fe2(aq) ? Fe3(aq) e-
  • Reduction
  • 8H(aq) MnO4-(aq) ? 4H2O(l) Mn2(aq)
  • What did I do in the above half-rxn?
  • Is it fully balanced?
  • 5e- 8H(aq) MnO4-(aq) ? 4H2O(l) Mn2(aq)
  • Balance both half-reactions
  • 5Fe2(aq) ? 5Fe3(aq) 5e- (multiply by 5 why?)
  • 5e- 8H(aq) MnO4-(aq) ? 4H2O(l) Mn2(aq)
  • Collate
  • Net rxn
  • 5Fe2(aq) 8H(aq) MnO4-(aq) ? 5Fe3(aq)
    4H2O(l) Mn2(aq)

4
Solve
  • VO2(aq) Zn(s) ? VO2(aq) Zn2(aq)

5
Answer
  • VO2(aq) Zn(s) ? VO2(aq) Zn2(aq)
  • Oxidation
  • Zn(s) ? Zn2(aq) 2e-
  • Reduction
  • e- 2H(aq) VO2(aq) ? VO2(aq) H2O(l)
  • Balancing both half-reactions
  • Zn(s) ? Zn2(aq) 2e-
  • 2e- 4H(aq) 2VO2(aq) ? 2VO2(aq) 2H2O(l)
  • Collate
  • Net reaction
  • Zn(s) 4H(aq) 2VO2(aq) ? 2VO2(aq) 2H2O(l)
    Zn2(aq)

6
In basic milieu
  • I-(aq) MnO4-(aq) ? I2(aq) MnO2(s)
  • Oxidation
  • I-(aq) ? I2(aq) e-
  • 2I-(aq) ? I2(aq) 2e-
  • Reduction
  • MnO4-(aq) ? 2OH-(aq) MnO2(s)
  • 2H(aq) 2OH-(aq) MnO4-(aq) ? 2OH-(aq)
    MnO2(s)
  • 2H2O(l) MnO4-(aq) ? 2OH-(aq) MnO2(s)
  • 2H2O(l) MnO4-(aq) ? 4OH-(aq) MnO2(s)
  • 3e- 2H2O(l) MnO4-(aq) ? 4OH-(aq) MnO2(s)
  • Balance both half-reactions
  • 6I-(aq) ? 3I2(aq) 6e-
  • 6e- 4H2O(l) 2MnO4-(aq) ? 8OH-(aq) 2MnO2(s)
  • Collate
  • Net rxn
  • 6I-(aq) 4H2O(l) 2MnO4-(aq) ? 3I2(aq)
    8OH-(aq) 2MnO2(s)

7
Solve
  • Al(s) H2O(l) ? Al(OH)4-(aq) H2(g)

8
Answer
  • Al(s) H2O(l) ? Al(OH)4-(aq) H2(g)
  • Oxidation
  • Al(s) 4OH-(aq) ? Al(OH)4-(aq) 3e-
  • Reduction
  • 2e- 2H2O(l) ? 2OH-(aq) H2(g)
  • Balance each half-reaction
  • 2Al(s) 8OH-(aq) ? 2Al(OH)4-(aq) 6e-
  • 6e- 6H2O(l) ? 6OH-(aq) 3H2(g)
  • Collate
  • Net-reaction
  • 2Al(s) 2OH-(aq) 6H2O(l) ? 2Al(OH)4-(aq)
    3H2(g)

9
Electricity
  • Movt of electrons
  • Movt of electrons through wire connecting 2
    half-reactions ? electrochemical cell
  • Also called voltaic or galvanic cell
  • Cell produces current from spontaneous rxn
  • Example copper in solution of AgNO3 is
    spontaneous
  • On the other hand, an electrolytic cell uses
    electrical current to drive a non-spontaneous
    chemical rxn

10
Voltaic cell
  • Solid Zn in zinc ion solution half-cell
  • Likewise, Cu/Cu-ion solution
  • Wire attached to each solid
  • Salt bridge
  • 1. contains electrolytes,
  • 2. connects 2 half-cells,
  • 3. anions flow to neutralize accumulated cations
    at anode and cations flow to neutralize
    accumulated anions at cathode (completes circuit)
  • An Ox anode oxidation
  • Has negative charge because releases electrons
  • Red Cat reduction cathode
  • Has positive charge because takes up electrons

11
Electrical current
  • Measured in amperes (A)
  • 1 A 1 C/s
  • Coulomb unit of electric charge
  • e- 1.602 x 10-19 C
  • 1 A 6.242 x 1018 e-/s
  • Electric current driven by difference in
    potential energy per unit of charge J/C
  • Potential difference (electromotive force or emf)
    volt (V)
  • Where 1 V 1 J/C

12
More
  • In the voltaic cell, potential difference (emf)
    between cathode and anode is referred to as
  • Cell potential (Ecell)
  • Under standard conditions (1 M, 1 atm, 25C),
    cell potential is
  • Standard cell potential Ecell
  • Cell potential measure of overall tendency of
    redox rxn to occur spontaneously
  • Thus, the higher the Ecell, the greater the
    spontaneity

13
Electrochemical notation
  • Cu(s)Cu2(aq)Zn2(aq)Zn(s)
  • Notation describes voltaic cell
  • An ox on left
  • Red cat on right
  • Separated by double vertical line (salt bridge)
  • Single vertical line separates diff phases

14
Electrochemical notation
  • Some redox rxns reactants products in same
    phase
  • Mn doesnt precipitate out ? uses Pt at cathode
  • Pt is inert, but provides area for electron
    gain/loss
  • Fe(s)Fe2(aq)MnO4-(aq), H(aq), Mn2(aq)Pt(s)
  • Write out net reaction

15
Answer
  • Fe(s)Fe2(aq)MnO4-(aq), H(aq), Mn2(aq)Pt(s)
  • Oxidation
  • Fe(s) ? Fe2(aq) 2e-
  • Reduction
  • 5e- MnO4-(aq) 8H(aq) ? Mn2(aq) 4H2O(l)
  • Net-reaction
  • 5Fe(s) 2MnO4-(aq) 16H(aq) ? 5Fe2(aq)
    2Mn2(aq) 8H2O(l)

16
Standard reduction potentials
  • One half-cell must have a potential of zero to
    serve as reference
  • Standard hydrogen electrode (SHE) half-cell
  • Comprises Pt electrode in 1 M HCl w/ H2 bubbling
    at 1 atm
  • 2H(aq) 2e- ? H2(g) Ered 0.00 V

17
Example
  • Throw zinc into 1M HCl
  • Zn(s)Zn2(aq)2H(aq)H2(g)
  • Ecell Eox Ered 0.76 V
  • If Ered 0.00 V (as the reference)
  • Then Eox 0.76 V ( oxid of Zn half-rxn)
  • Reduction of Zn-ion
  • Is -0.76 V (non-spontaneous)

18
Problem
  • Cr(s)Cr3(aq)Cl-(aq)Cl2(g)
  • What is the std cell pot (Ecell) given oxid of
    Cr 0.73 V and Cl red 1.36V?
  • Hint standard electrode potentials are intensive
    properties e.g., like density
  • Stoichiometry irrelevant!

19
Solution
  • Ecell Eox Ered 0.73V 1.36V
  • 2.09V

20
Appendix M, pages A-33-35
  • Standard reduction potentials in aqueous solution
    _at_ 25C
  • Also, pg. 967, Table 20.1 (gives increasing
    strengths of ox/red agents)
  • Lets take a look at it
  • Does increasing strengths of ox/red agents make
    sense?
  • What happens to oxidizing agent, reducing agent?

21
Problem
  • Calculate the standard cell potential for the
    following
  • Al(s) NO3-(aq) 4H(aq) ? Al3(aq) NO(g)
    2H2O(l)

22
Answer
  • Oxidation
  • Al(s) ? Al3(aq) 3e- Eox 1.66V
  • Reduction
  • NO3-(aq) 4H(aq) 3e- ? NO(g) 2H2O(l)
  • Ered 0.96V
  • Ecell Eox Ered 1.66V 0.96V 2.62V

23
Predicting the spontaneous direction of a redox
rxn
  • Generally, any reduction half-rxn is spontaneous
    when paired w/reverse of half-rxn below it in
    table of standard reduction potentials
  • Lets look at table
  • Predict the exact value and spontaneity for the
    following
  • Fe(s) Mg2(aq) ? Fe2(aq) Mg(s)

24
Answers
  • Fe(s) Mg2(aq) ? Fe2(aq) Mg(s)
  • Oxidation
  • Fe(s) ? Fe2(aq) 2e- Eox 0.45V
  • Reduction
  • Mg2(aq) 2e- ? Mg(s) Ered -2.37V
  • Ecell Eox Ered 0.45V -2.37V
  • -1.92V
  • nonspontaneous

25
Will metal X dissolve in acid?
  • Metals whose reduction half-rxns lie below
    reduction of proton to hydrogen gas will dissolve
    in acids
  • Why?
  • Just look at the table!
  • Nitric acid is exception
  • Lets take a look

26
Ecell, ?G, K
  • What must the values for Ecell, ?G, K be in
    order to have a spontaneous rxn?
  • ?Glt0
  • Ecellgt0
  • Kgt1
  • Product-favored

27
Relationship between ?G Ecell
  • Faradays Constant (F) 96,485 C/mol e-
  • ?G -ne-FEcell
  • Problem
  • Calculate ?G for
  • I2(s) 2Br-(aq) ? 2I-(aq) Br2(l)
  • Is it spontaneous?

28
Solution its nonspontaneous!
  • I2(s) 2Br-(aq) ? 2I-(aq) Br2(l)
  • Oxidation
  • 2Br-(aq) ? Br2(l) 2e- Eox -1.09V
  • Reduction
  • I2(s) 2e- ? 2I-(aq) Ered 0.54V
  • Ecell -1.09V 0.54V -0.55V

29
Problem
  • 2Na(s) 2H2O(l) ? H2(g) 2OH-(aq) 2Na(aq)
  • Is it spontaneous?

30
Solution its spontaneous!
  • Oxidation
  • 2Na(s) ? 2Na(aq) 2e- Eox 2.71V
  • Reduction
  • 2H2O(l) 2e- ? H2(g) 2OH-(aq) Ered -0.83V
  • Ecell 2.71V -0.83V 1.88V

31
Relationship between Ecell K
32
Problem
  • Calculate K for
  • 2Cu(s) 2H(aq) ? Cu2(aq) H2(g)

33
Solution is it product-favored?
  • Oxidation
  • 2Cu(s) ? Cu2(aq) 2e- Eox -0.34V
  • Reduction
  • 2H(aq) 2e- ? H2(g) Ered 0.00V
  • Ecell -0.34V

34
Cell potential concentration Nernst Equation
  • Concentration ? 1M
  • Non-standard conditions
  • Under standard conditions, Q 1
  • ? Ecell Ecell

35
Problem
  • Compute the cell potential, given
  • Cu(s) ? Cu2(aq, 0.010 M) 2e-
  • MnO4-(aq, 2.0 M) 4H(aq, 1.0M) 3e- ? MnO2(s)
    2H2O(l)

36
Solution
  • Balance the equation!
  • Oxidation
  • 3Cu(s) ? 3Cu2(aq) 6e- Eox -0.34V
  • Reduction
  • 2MnO4-(aq) 8H(aq) 6e- ? 2MnO2(s) 4H2O(l)
    Ered 1.68V

37
To summarize
  • If Qlt1, rxn goes to products
  • Ecell gt Ecell
  • If Qgt1, rxn goes to reactants
  • Ecell lt Ecell
  • If Q K, _at_ eq.,
  • Ecell 0 ( Ecell 0)
  • Explains why all batteries die

38
Concentration cells
  • Voltaic cells can be constructed from two similar
    half-rxns where difference in concentration
    drives current flow
  • Cu(s) Cu2(aq, 2.0M) ? Cu2(aq, 0.010M) Cu(s)
  • Ecell 0 since both half-rxns are the same
  • However, using Nernst equation, different
    concentrations yield 0.068V
  • Lets take a look
  • Flow is from lower Cu-ion concentration half-cell
    to higher one
  • Down the concentration gradient
  • The electrons will flow to the concentrated cell
    where they dilute the Cu-ion concentration
  • Results in ? Cu-ion concentration in dilute cell
    ? Cu-ion concentration in concentrated cell

39
Batteries
  • Dry-cell batteries
  • Dont contain large amounts of water
  • Anode
  • Zn(s) ? Zn2(aq) 2e-
  • Cathode
  • 2MnO2(s) 2NH4(aq) 2e- ? Mn2O3(s) 2NH3(g)
    H2O(l)
  • Cathode is carbon-rod immersed in moist (acidic)
    paste of MnO2 that houses NH4Cl
  • 1.5 V

40
Batteries
  • More common dry-cell type
  • Alkaline battery
  • Anode
  • Zn(s) 2OH-(aq) ? Zn(OH)2(s) 2e-
  • Cathode
  • 2MnO2(s) 2H2O(l) 2e- ? 2MnO(OH)(s)
    2OH-(aq)
  • Longer shelf-life, live longer
  • Cathode in basic paste

41
Car Batteries
  • Lead-acid storage batteries
  • 6 electrochemical cells (2V) in series
  • Anode
  • Pb(s) HSO4-(aq) ? PbSO4(s) H(aq) 2e-
  • Cathode
  • PbO2(s) HSO4-(aq) 3H(aq) 2e- ? PbSO4(s)
    2H2O(l)
  • In 30 soln of sulfuric acid
  • If dead due to excess PbSO4 covering electrode
    surfaces
  • Re-charge (reverse rxn) ? converts PbSO4 to Pb
    and PbO2

42
Rechargeable batteries
  • Ni-Cd
  • Anode
  • Cd(s) 2OH-(aq) ? Cd(OH)2(s) 2e-
  • Cathode
  • 2NiO(OH)(s) 2H2O(l) 2e- ? 2Ni(OH)2(s)
    2OH-(aq)
  • KOH, usually, used
  • 1.30 V
  • Reverse rxn recharges battery
  • Excess recharging ? electrolysis of water
  • EXPLOSION!!!
  • Muhahahaha!

43
(No Transcript)
44
Rechargeable batteries
  • Since Cd is toxic
  • Developed safer alternative
  • Ni-MH
  • Hybrid car batteries high energy density
  • Same cathode rxn as previous
  • Anode
  • MH(s) OH-(aq) ? M(s) H2O(l) e-
  • Commonly, M AB5, where A is rare earth mixture
    of La, Ce, Nd, Pr, and B is Ni, Co, Mn, and/or Mn
  • Very few use AB2, where A Ti and/or V

45
(No Transcript)
46
Rechargeable batteries
  • Anode made of graphite w/incorporated Li-ions
    between carbon layers
  • Ions spontaneously migrate to cathode
  • Cathode LiCoO2 or LiMn2O4
  • Transition metal reduced
  • Used in laptop computers, cell phones, digital
    cameras
  • Light weight and high E density

47
Fuel cell
  • Reactants flow through battery
  • Undergo redox rxn
  • Generate electricity
  • Hydrogen-oxygen fuel cell
  • Anode
  • 2H2(g) 4OH-(aq) ? 4H2O(l) 4e-
  • Cathode
  • O2(g) 2H2O(l) 4e- ? 4OH-(aq)
  • Used in space-shuttle program
  • And Arnolds Hummah

48
Electrolysis
  • Electrical current used to drive nonspontaneous
    redox rxn
  • In electrolytic cells
  • Used in
  • Electrolysis of water
  • Metal plating silver coated on metal, jewelry,
    etc.

49
Electrolytic cells using electricity to run a rxn
  • Anode is ? gives electrons, connected to
    positive terminal of power source
  • Cathode is - ? takes electrons, connected to
    negative terminal of power source
  • Opposite scheme of voltaic cell!

50
Predicting the products of electrolysis
  • Pure molten salts
  • Anion oxidized/cation reduced
  • Obtain 2Na(s) and Cl2(g) from electrolysis of
    NaCl
  • Mixture of cations or anions
  • K/Na and Cl-/Br- present
  • Look at page 967 compare half-cell potentials
  • Cation/anion preferably reduced that has least
    negative, or most positive, half-cell potential

51
Example
  • Predict the half-rxn occurring at the anode and
    the cathode for electrolysis of
  • AlBr3 MgBr2
  • Oxidation
  • Br-(l) ? Br2(g) 2e- Eox -1.09V
  • Bromide will be oxidized at the anode
  • Reduction
  • Al3(l) 3e- ? Al(s) Ered -1.66V
  • Mg2(l) 2e- ? Mg(s) Ered -2.37V
  • Reduction of Al will occur at the cathode since
    its potential is greater than Mgs

52
Predicting the products of electrolysis
  • aqueous solns same as 2
  • Water redox might occur simultaneously
  • 2H2O(l) ? O2(g) 4H(aq) 4e-
  • 2H2O(l) 2e- ? H2(g) 2OH-(aq)
  • Eox -0.82 V Ered -0.41 V
  • ?Ecell -1.23 V

53
Problem
  • Given oxidation of I- -0.54 V reduction of
    Li -3.04 V, which, if any, gases would be
    formed and where i.e., at cathode/anode?

54
Solution
  • Oxidation
  • 2I-(aq) ? 2I2(aq) 2e- Eox -0.54V
  • 2H2O(l) ? O2(g) 4H(aq) 4e- Eox -0.82V
  • I- will be oxidized at the anode
  • Reduction
  • 2Li(aq) 2e- ? 2Li(s) Ered -3.04 V
  • 2H2O(l) 2e- ? H2(g) 2OH-(aq) Ered -0.41 V
  • Water will be reduced at the cathode

55
Stoichiometry of electryolysis
  • Can use e- stoichiometric relations to predict
    moles and/or grams of substances
  • Remember, unit of current ampere A 1 C
    (magnitude of current)/s (time of current flow)
  • Also, F 96,485 C/mole e-

56
Problem
  • Gold can be plated out of a soln containing the
    Au3 according to
  • Au3(aq) 3e- ? Au(s)
  • What mass of gold (in grams) will be plated by
    the flow of 5.5 A of current for 25 mins?

57
Solution
Write a Comment
User Comments (0)
About PowerShow.com