Origin%20of%20Ultra%20High%20Energy%20Cosmic%20Rays - PowerPoint PPT Presentation

About This Presentation
Title:

Origin%20of%20Ultra%20High%20Energy%20Cosmic%20Rays

Description:

anisotropy expectations. for different AGN types. Takami, SI , in prep. ... characteristic spectra, anisotropy, composition. hard X-rays TeV gamma-rays. AGNs ... – PowerPoint PPT presentation

Number of Views:100
Avg rating:3.0/5.0
Slides: 28
Provided by: Susumu
Category:

less

Transcript and Presenter's Notes

Title: Origin%20of%20Ultra%20High%20Energy%20Cosmic%20Rays


1
Origin of Ultra High Energy Cosmic Rays
Astrophysical Sources, Gamma-Ray Connection
Susumu Inoue (NAOJ)
astro-ph/0701835 (brief review)
GRBs
AGNs
clusters
collaborators
G. Sigl (APC), F. Miniati (ETH), E. Armengaud
(CEA)
F. Aharonian (MPIK), N. Sugiyama (Nagoya)
K. Asano (NAOJ)
2
outline
1. general aspects
propagation extragalactic radiation and B fields
source candidates acceleration energetics
2. physics of selected UHECR source candidates
I. AGNs
different AGN types
II. GRBs
GeV-TeV g-rays
III. cluster accretion shocks
UHECR nuclei
UHE p-induced X/g-rays
UHECR-induced secondary X/g radiation signatures
neutrinos -gt Halzen
3
The problem
UHECRs are the highest energy particles observed
in the universe, exceeding 1020 eV. Their origin
is unknown.
Emax 3x1020 eV 50J kinetic E of 100km/h
fastball (220km/h tennis serve)
4
UHECR observations
before July (ICRC) 07
spectrum
at least up to 1020 eV
observations -gt Kampert
AGASA
HiRes
light dominant up to lt2x1019 eV?
composition
arrival directions
globally isotropic no ID with sources
Xmax g cm-2
gt1020 eV
5
UHECRs energy losses during propagation
protons photopairphotopion
pgCMB? p ee- Epgt5x1017eVpgCMB? p p
Epgt7x1019eV
Fe
Lloss
p
(Greisen-Zatsepin-Kuzmin limit)
Lp, 20eV lt100 Mpc
g
nuclei photopairphotodisint.
AgCMB? A ee-AgFIRB? A-iN iN
Nagano Watson 00
e.g. Stecker Salamon 99
E
LFe, 20eV lt300 Mpc
nuclei possible at the highest E!
Watson astro-ph/0408110
Anchordoqui, Allard, Armengaud,
6
extragalactic B fields
should be correlated with large scale struc.
very uncertain observationally and theoretically
crucial differences between theoretical models
Sigl, Miniati Ensslin 03,04
Dolag 04, 05 Brüggen 05
propagation -gt Das
Kang 07
also uncertain
Galactic B fields
secondary photon/neutrino signatures desirable to
pinpoint sources!
7
top-down models very strongly constrained
topological defects, EHE n Z-bursts, UHECRons,
superheavy DM
Auger spectrum
Auger photon limits
Yamamoto arXiv 0707.2638
Semikoz arXiv 0706.2690
superheavy DM ruled out
spectral steepening at Egt1019.6 eV (6 sigma)
also claimed by HiRes
8
UHECR sources acceleration
adapted from Yoshida Dai 98
Hillas plot
E ? Ze B R (v/c)
confinement
B
GRBs
B?R-1
acceleration vs
Emax
escape source lifetime adiab. expansion
loss radiative loss
AGN jets
clusters
R
9
shock acceleration
  • - power-law spectrum
  • dN/dE?E-2 for strong shock
  • very efficient
  • up to 50 of kinetic energy

upstream
downstream
shock front
  • consistent with observations
  • in-situ earth-solar wind,
  • SNRs, radio galaxy hot spots,

acceleration -gt Berezhko
10
UHECR sources energy budget
kinetic E input into the universe
AGNs (radio galaxies)
z-dep. LF
Willott 01
Lkin-Lrad correlation
Rawlings 92
supernovae, GRBs
? star formation rate
Porciani Madau 01
ESN1051 erg
EGRB1053 erg, indep. of beaming
cluster accretion
Press Schechter mass function
Lacc(M)0.9x1046 (M/1015 MQ)5/3 erg/s
Keshet 04
UHECR budget
_at_1019 eV
differential (per unit z)
uCR 3x10-19 erg cm-3 1054 erg Mpc-3
dEkin/dz(dt/dz)?dL L dn/dL
11
active galactic nuclei (AGNs)
GeV blazar
FR II radio galaxy
supermassive black hole accretion disk (flow)
high- power
radio-loud (relativistic jet)
lt1
low- power
9
radio- quiet (no jet)
90
TeV blazar (BL Lac)
FR I radio galaxy
Seyfert galaxy
radio-quiet quasar
activity timescales 107-108 yr ltUHECR delay time
12
AGNs acceleration sites
near-nucleus? R1013-1014 cm B104G?
Seyfert or radio-quiet quasar
EmaxEpglt1018eV
e.g. Szabo Protheroe 94
inconsistent with observed keV-MeV
UHECR accel. not expected
from Chandra webpage
13
AGNs acceleration sites
near-nucleus?
low power (FR I) radio galaxy
UHECR accel. not expected
inner jet (blazar) R1016-1017 cm B0.1-1G
EmaxEpglt1020eV
e.g. Mannheim 93
adiabatic loss -gt n conversion escape?
shear-layer acceleration?
accel./escape non-trivial
from Chandra webpage
14
AGNs acceleration sites
near-nucleus?
high power (FR II) radio galaxy
UHECR accel. not expected
inner jet (blazar)
EmaxEpglt1020eV
accel./escape non-trivial
hot spot R1021 cm B1mG
EmaxEesc1020-21eV
e.g. Rachen Biermann 93
from Chandra webpage
accel./escape easiest
15
AGNs anisotropy expectations?
Takami 06
ns5x10-6 Mpc-3
anisotropy expectations for different AGN types
Takami, SI, in prep.
16
AGNs UHECR-induced secondary emission
proton synchrotron from hot spots/knots
Aharonian 02
GZK radiation from intracluster AGNs
Armengaud, Sigl Miniati 05
17
GRBs
internal external (forward reverse) shocks
UHECR accel. site
Waxman 95, Vietri 95
Gialis Pelletier 03 Wick, Dermer Atoyan 04
adapted from Meszaros 01
radio-IR-opt-X afterglow
prompt X-g emission
optical flash, radio flare
internal shocks
external reverse shock
external forward shock
18
GRBs as UHECR sources
Waxman Miralda-Escude 96
time delayt(Ep,D)q2D/4c 107 yr Ep,20-2
D100Mpc2lMpcB-82
individual sources-gtnarrow spectrum at given time
19
GRBs GeV-TeV g signature of UHECRs
Asano Inoue ApJ, in press arXiv0705.2910
  • electronsprotons in internal shocks (prompt
    phase)
  • pair cascading, pg interactions, various
    radiative processes
  • parameters Esh, Dt, G, fBuB/ue, assume upue,
    pp2

proton synchrotron
inverse Compton
20
GRBs GeV-TeV g signature of UHECRs
secondary pair synchrotron
muon synchrotron
double (multiple) breaks -gt proton signature
GLAST, MAGIC (II), HESS (II), VERITAS, CANG.III
MILAGRO, Auger
21
cluster accretion shocks
Ryu 03
strong shocks
Mach no.
protons
Ep, max 1018-1019 eV
Kang, Rachen, Biermann 97
HOWEVER
Fe nuclei (Z26)
if Bs1 mG
EFe, maxgt1020 eV
22
nuclei from cluster accretion shocks as UHECRs
Inoue, Sigl, Miniati Armengaud, PRL submitted
(astro-ph/0701167)
Emax
acceleration vs CMB losses, lifetime
shock radius, velocity, etc.
Hubble
Rs3.2 Mpc Vs2200 km/s
Bohm limit shock accel. time
tacc(20/3) rgc/Vs2
escape limit tescR2/5k(E) Emax/Z7x1018 eV
heavy nuclei Emax
for Bs1 mGEFe, max1020 eV
23
UHECRs as nuclei from clusters
SI, Sigl, Miniati, Armengaud PRL,
submitted (astro-ph/0701167)
spectrum
anisotropy
with EGMF
fCR0.005-0.3
100 eventsgt4x1019eV
no EGMF
fCR0.002
composition
1000 eventsgt4x1019eV
consistent with current data (spectrum lt2
sigma) with some heavy enhancement
clear predictions for Auger, Telescope Array,
JEM-EUSO
1019 eV
1020 eV

24
latest Auger results
composition
Unger arXiv 0706.1495
mixed composition at all E
becoming heavier at highest E?
25
UHE proton-induced hard Xg emission from clusters
SI, Aharonian, Sugiyama 05
p(1019eV) gCMB? p ee- (1016eV)
ee-B(mG)?keV, ee-gCMB?TeV
Coma D100 Mpc
Suzaku? NeXT, Simbol-X, NuSTAR
HESS, MAGIC, CANG.3, VERITAS
26
summary
AGNs
different likelihood for different types
high-power RG gt low-power RG gt radio-quiet

GRBs
tight energy budget
characteristic GeV-TeV signatures
cluster accretion shocks (nuclei)
consistent for some enhancement in heavy
composition
characteristic spectra, anisotropy, composition
hard X-rays TeV gamma-rays
other sources? starburst galaxies Galactic NS,
magnetars
none of these?
27
concluding haiku
???? ????? ???? ????(?)
Matsushima, ah Matsushima, Matsushima. -
Matsuo Basho (?)
Write a Comment
User Comments (0)
About PowerShow.com