Grain Growth in Protoplanetary Disks: the SubMillimeter - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

Grain Growth in Protoplanetary Disks: the SubMillimeter

Description:

major new facilities under construction: ALMA, eVLA. 3 ... e.g. Herbig Ae stars UX Ori, CQ Tau: 1.1-7mm~ 2.0 0.3, 2.65 0.1 ~ 0 and large disk? ... – PowerPoint PPT presentation

Number of Views:39
Avg rating:3.0/5.0
Slides: 23
Provided by: MPIA3
Category:

less

Transcript and Presenter's Notes

Title: Grain Growth in Protoplanetary Disks: the SubMillimeter


1
Grain Growth in Protoplanetary Disks the
(Sub)Millimeter
David J. Wilner Harvard-Smithsonian Center for
Astrophysics
Sep 11, 2006
From Dust to Planetesimals, Ringberg
2
(Sub)Millimeter?
  • longest observable ?s for dust 0.35 to gt1 mm
  • vibrational dust emission is dominant mechanism
    (thermal fluctuations in charge distribution)
  • sensitive to cold dust, Tlt10s of K
  • low opacity, sample emission at all disk depths
  • ? dependence of opacity diagnostic of dust
    properties (e.g. growth to millimeter size)
  • no contrast issue with stellar photosphere
  • major new facilities under construction ALMA,
    eVLA

3
(Sub)Millimeter Observables
  • T Tauri, Herbig Ae stars (dlt150 pc, 1-10 Myr)
  • gas rich, Keplerian disks (Mdiskltlt M)
  • submm flux vs. wavelength, F ?-?, 2 lt ? lt 4
  • spatially resolved brightness (interferometer)

4
Basics of ?
  • mass opacity (? gt0.1 mm) approx. power law
  • normalization, power
    law index ?, depend
    on dust
    properties
  • composition
  • size distribution
  • geometry
  • (e.g. Draine 2006)

??-2
Adams et al. 1988, following Draine Lee 1984
5
From ? to ?
  • flux density emitted by an element dA
  • if ?ltlt1 and h?ltltkT, then
  • and ? simply related to ?

F ?-(2?)
6
Disk Dust appears Different
  • early (sub)mm obs disk lt?gt1 vs. ISM ?1.7
  • (e.g Weintraub et al. 1989, Adams et al. 1990,
    Beckwith et al. 1990, Beckwith Sargent 1991,
    Mannings Emerson 1994)

Beckwith Sargent (1991)
?d(?-2)(1?)
0 1 2
7
?1 Interpretations
  • 1. changes in dust properties
  • grain growth
  • small, a ltlt ?/2? ? ?2
  • large, a gtgt ?/2? ? ?0
  • mm size, ?1
  • ? ?-1 due to
  • dust composition,
  • particle geometry
  • 2. optically thick emission
  • F ?-2 (in part) ? ? gt (? - 2)

Pollack et al. 1994 mixture, compact,
segregated spheres, n(a) a-q,
q3.5
amax1 mm
amax10 cm
Calvet DAlessio 2001
8
Dust Properties or Optical Depth?
  • e.g. Herbig Ae stars UX Ori, CQ Tau
  • ?1.1-7mm 2.00.3, 2.650.1
  • ? 0 and large disk? any ? and small disk?

Testi et al. (2001)
9
Resolve Ambiguity
  • observe spatial distribution of sub(mm)
    brightness
  • arcsecond scales require interferometry
  • 1.3, 3 mm CARMA, PdBI, NMA ATCA, SMA
  • 7 mm VLA (thanks to CONACyT, MPIfR, NSF)
  • longer ? lever minimizes ? uncertainty,
    probes larger dust more concern about ionized
    gas

10
Interferometer Studies
  • combine fluxes, images, improved disk models
  • TW Hya
  • CQ Tau
  • 7 (2) Herbig Ae stars
  • 14 (10) Taurus PMS stars
  • 10 (5) southern PMS stars
  • 24 (20) Taurus/Oph PMS stars
  • Calvet et al. 2002
  • Testi et al. 2003
  • Natta et al. 2004
  • Rodmann et al. 2006
  • Lommen et al. 2006
  • Andrews Williams 2007

TBvs. disk radius at 0.4, 3, and 7 mm, from two
dust models of DAlessio et al. 2001
Calvet DAlessio 2001
11
Grain Growth in TW Hya
  • irradiated accretion disk model matches SED and
    VLA (and SMA) intensities from 10s to Rout 200
    AU
  • shallow (sub)mm slope requires amax gtgt 1 mm
  • observed 7 mm low brightness requires ? ltlt 1

?0.7?0.1
Calvet et al. 2002
12
Many (Barely) Resolved Disks
ATCA 3mm Lommen et al. 2006
SMA 0.87/1.3mm Andrews Williams
VLA/PdBI/OVRO Natta et al. 2004
VLA 7mm Rodmann et al. 2006
13
Many More ? Determinations
  • ?1 for many/most resolved disks

solid Lommen et al. 2006 dashed Rodmann et
al. 2006 dotted Natta et al. 2004
14
Limitations/Complexity of ?
  • ? is an average, for any dust model
  • cannot disentangle all properties
  • ?lt1 hard to avoid substantial mass fraction
    aO(?)

amax ?
Natta Testi 2004
Natta Testi 2004
15
TW Hya at 3.5 cm?
  • disk model underpredicts 3.5 cm emission
  • emission mechanism?
  • ionized protostellar wind
  • if Fcm?dMacc/dt, low by 103x
  • spinning dust (Rafikov 2006)
  • requires high (unrealistic) C
    fraction in nanoparticles/PAHs
  • synchrotron
  • X-rays not stellar activity dense, cool, and
    depleted ?accretion (Stelzer Schmitt 2004)
  • thermal dust, ? ? const

F ?-2.6?0.1
16
Grain Size Evolution
  • theory growth, settling, destruction,
  • depart from simple power law size distribution
  • create midplane population of cm size
    (timescale?)

Weidenschilling 1997
Dullemond Dominik 2005
17
TW Hya Pebble Population
  • 3.5 cm disk dust emission
  • 1. not variable weeks to years
  • 2. resolved at arcsec scale,
  • brightness only 10 K
  • 3. steep spectrum to 6 cm

Wilner et al. 2005
toy model small cm size grains
18
Any ? Correlations?
  • no trend of ? with stellar luminosity, mass, age
  • tantalizing trends of ? with mid-ir growth,
    settling indicators

? ?
Acke et al. 2004
??
Lommen et al. 2006
PPV Natta et al. 2006
19
Remarks
  • (sub)mm ?lt1 compelling evidence for growth
  • most of original dust mass in mm/cm size
    particles
  • no clear trends with stellar properties
  • mm/cm sizes persist for Myrs
  • competition between growth and destruction
  • are the disks we can study in the (sub)mm the
    ones that will never form planets?
  • probably not transition disks

PPV Natta, Testi, Calvet, Henning, Waters
Wilner, astro-ph/0602041
20
Transition Disks Inner Holes
Spitzer IRS implies r24 AU hole ... we remain
skeptical of the existence of such a large
central gap 5 AU devoid of dust. -
Chiang Goldreich (1999)
Calvet et al. 2005
Wilner et al. 2006
21
Next Generation (Sub)mm Facilities
  • 10 to 100x better sensitivity, resolution, image
    quality
  • dust emission structure at 0.1 to 0.01 arcsec
  • precision (sub)mm spectral index maps

22
End
Write a Comment
User Comments (0)
About PowerShow.com