New Vector Resonance as an Alternative to Higgs Boson (Strong EWSB) - PowerPoint PPT Presentation

About This Presentation
Title:

New Vector Resonance as an Alternative to Higgs Boson (Strong EWSB)

Description:

EW pions F1,F2,? become WL, ZL. Where are EW pions ??? 10. Where is s ? ... Nonlinear s model (QCD) Effective Lagrangian valid until a few hundred MeV. v = 90 MeV ... – PowerPoint PPT presentation

Number of Views:44
Avg rating:3.0/5.0
Slides: 38
Provided by: ii762
Category:

less

Transcript and Presenter's Notes

Title: New Vector Resonance as an Alternative to Higgs Boson (Strong EWSB)


1
New Vector Resonance as an Alternative to Higgs
Boson(Strong EWSB)
Fyzika za Štandardným modelom klope na dvere
Svit, 9.-16.9. 2007
  • Ivan Melo
  • University of Zilina

2
EWSB - one of Great Mysteries of Particle Physics
Problem !
  • SM . 1 Higgs
  • Strong EWSB .. no Higgs
  • SUSY (MSSM) ..... 5 Higgs
  • Large Extra Dimensions
  • Little Higgs

Monotheists Atheists Polytheists
Classical
New
3
Naturalness problem (Fine-tuning, Gauge Hierarchy
problem)
- (200 GeV)2 for ? 103 GeV
- (200 GeV)2 . 1032 for ? 1019 GeV
mH 100 200 GeV
- (200 GeV)2 . 1032
(200 GeV)2 . 1032
4
SM Strong EWSB SUSY (MSSM)
Large Extra Dimensions Little Higgs
0 ? mH 319 GeV
H not elementary, it melts into techniquarks at
?TC 1-3 TeV

t1(2)
? is not 1019 GeV, ? is as low as 103 GeV
5
Fundamental energy scales
Greg Anderson, Northwestern University
6
  • Every fundamental energy scale should have a
    dynamical origin

  • K. Lane

7
Linear sigma model (model of nuclear forces)
U(s,p)
s
v µ/v? 90 MeV
SU(2)L x SU(2)R ? SU(2)V
s v s (spontaneous chiral symmetry
breaking)
8
Standard model Higgs Lagrangian
U(s,p)
s
SU(2)L x SU(2)R ? SU(2)V
v µ/v? 246 GeV
Higgs Lagrangian Linear sigma model
9
Where are EW pions ???
ms µ2 mp 0
SU(2)L x SU(2)R ? SU(2)V (global)
massless GB
Higgs mechanism W,Z become massive by eating GB
SU(2)L x U(1)Y ? U(1)Q (local)
EW pions F1,F2,? become WL, ZL
10
Where is s ?
  • the (linear) s model, although it has some
  • agreeable features, is quite artificial. A
    new particle is postulated, for which there is no
    experimental evidence
  • M. Gell-Mann, M. Levy, Nuovo Cimento 16 p.705
    (1960)

and they decided to get rid of s particle
11
Nonlinear s model (QCD)
v 90 MeV
Effective Lagrangian valid until a few hundred MeV
12
Where is Higgs boson ?
Higgs Lagrangian, although it has some
agreeable features, is quite artificial. A new
particle is postulated, for which there is no
experimental evidence
so we get rid of the Higgs boson
Higgs boson is not necessary, Higgs mechanism
works even without Higgs !
13
Nonlinear s model (SM Higgs sector)
v 246 GeV
Effective Lagrangian valid until 1-3 TeV
14
Chiral SB in QCD
  • SU(2)L x SU(2)R ? SU(2)V , vev 90
    MeV

EWSB
SU(2)L x SU(2)R ? SU(2)V , vev 246
GeV
15
Technicolor
  • Technicolor of massless U and D techniquarks
  • SU(2)L x SU(2)R invariant
  • As a result of dynamics, interactions of
  • massless techniquarks, we get
  • - SU(2)L x SU(2)R ? SU(2)V
  • - v 246 GeV
  • - EW pions WL, ZL made of
    U,D techniquarks
  • Best explanation of Naturalness Hierarchy
    problems

16
Extended Technicolor (ETC)
  • ETC was introduced to give masses to fermions
  • but introduced also large FCNC and conflict
    with precision EW measurements

U
D
ETC
Walking technicolor
f
f
ETC has also problem to explain large top mass
(mt 174 GeV)
Topcolor assisted technicolor
17
WL WL ? WL WL WL WL ? t t t t ? t t
t
t
t
(Equivalence theorem)
p WL
L i gp M? /v (p- ?µ p - p ?µ p-) ?0µ
gt t ?µ t ?0µ gt t ?µ ?5 t ?0µ
18
  • International Linear Collider ee- at 1 TeV

ee ? ?tt ? WW tt ee ? ?tt ? tt tt
ee ? WW ee ? tt
ee ? ?? WW
ee ? ?? tt
Large Hadron Collider pp at 14 TeV
pp ? ?tt ? WW tt pp ? ?tt ? tt tt
pp ? WW pp ? tt
pp ? jj WW
pp ? jj tt
19
Chiral effective Lagrangian SU(2)L x
SU(2)R global, SU(2)L x U(1)Y local

L Lkin Lnon.lin. s model - a v2 /4 Tr(?µ
i gv ?µ . t/2 )2 Lmass
LSM(W,Z) b1 ?L i ?µ (u?µ u i
gv ?µ . t/2 u i g/6 Yµ) u ?L
b2 ?R Pb i ?µ (u ?µ u i gv ?µ . t/2 u i g/6
Yµ) u Pb ?R ?1 ?L i ?µ u Aµ ?5 u
?L ?2 ?R P? i ?µ u Aµ ?5 u P?
?R
BESS
Our model
Standard Model with Higgs replaced
with ?
?µ u(?µ i g/2 Yµt3)u u(?µ i g Wµ .
t/2)u/2 Aµ u(?µ i g/2 Yµt3)u - u(?µ i g
Wµ . t/2)u/2 u exp(i p . t /2v) ?L
(tL,bL) Pb diag(p1,p2)
gp M? /(2 v gv) gt gv b2 /4
M? va v gv /2
t
20
Unitarity constraints
Low energy constraints
gv 10 ? gp 0.2 M?
(TeV) b2 ?2 0.04 ? gt gv b2 /
4 b1 ?1 0.01 ? b1 0
  • WL WL ? WL WL , WL WL ? t t, t t ? t t

gp 1.75 (M? 700 GeV) gt 1.7 (M?
700 GeV)
21
Partial (G?WW) andtotal width Gtot of ?
22
(No Transcript)
23
Subset of fusion diagrams approximations
(Pythia)
Full calculation of 66 diagrams at tree level
(CompHEP)
24
Pythia vs CompHEP
  • ? (M 700 GeV, G 12.5 GeV, gv 20,
    b2 0.08)
  • Before cuts
  • vs (GeV) 800
    1000 1500
  • Pythia (fb) 0.35
    0.95 3.27
  • CompHEP (fb) 0.66
    1.16 3.33

25
(No Transcript)
26
Backgrounds (Pythia)
  • ee- ? tt ?
  • ee- ? ee- tt
  • s(0.8 TeV) 300.3 1.3 fb ? 0.13 fb
    (0.20 fb)
  • s(1.0 TeV) 204.9 2.4 fb ? 0.035 fb
    (0.16 fb)

27
(No Transcript)
28
N(?) N(no res.)
vN(tt?eett)(N(no res.))
R
S/vB gt 5
gv
gv
29
e- e ? t t
?
different from Higgs !
xy560 nm z0.40 mm n2x1010
? (M 700 GeV, b20.08, gv20)
30
39/8 diagrams in the dominant gg channel
?
No-resonance background
?
?
31
CompHEP results pp ? W W t t X
? M?700 GeV, G?4 GeV, b20.08,
gv10 39 diagrams
8 diagrams
MWW(GeV)
gt1,2 gv b2/4
gpM?/2vgv
s(gg) 10.2 fb ? 1.0 fb
Cuts 700-3G? lt mWW lt 700 3G? (GeV)
pT (t) gt 100 GeV, y(t) lt 2
No resonance background s(gg)
0.037 fb
32
l jjbjjbjj reconstruction (CompHEP, Pythia,
Atlfast, Root)
Athena 9.0.3
One charged lepton channel
40 of events
electron gt 30 GeV
muon gt 20 GeV
of
Cuts
GeV
mass of the W
jets gt 25 GeV
50
b-tagging efficiency
Reconstruction criterion
33
Distribution in invariant mass of WW pair (? ?WW)
? M?700 GeV, G?4 GeV, b20.08,
gv10
Pz(?) chosen correctly in 61.5 of events
number of events/17 GeV
34
39 diagrams
8 diagrams
Mass of the W boson
Lum100/fb
Lum100/fb
12.2 events
2.4 events
number of events/0.6 GeV
number of events/0.6 GeV
Mass of the top quark
Lum100/fb
Lum100/fb
12.2 events
2.4 events
number of events/2.5 GeV
number of events/2.5 GeV
35
? M?1000 GeV G?26 GeV
Lum 100 fb-1 12.8 events
number of events/32 GeV
36
1. Can we improve WWtt reconstruction ?
L 100/fb 2.4 events 8 diagrams
versus
2.
8 diagrams
37
Conclusions
  • New vector resonance as an alternative to Higgs
    Boson
  • Modified BESS model motivated by technicolor
  • Rich ee- and pp phenomenology
Write a Comment
User Comments (0)
About PowerShow.com