Elimination of Repeated Information in Persistent Allocation Sub-burst IEs - PowerPoint PPT Presentation

1 / 10
About This Presentation
Title:

Elimination of Repeated Information in Persistent Allocation Sub-burst IEs

Description:

Variable voice codec. Variable VoIP packet because of header compression, active/silence. Applicable when different users use different codec. Backbone delay variation ... – PowerPoint PPT presentation

Number of Views:65
Avg rating:3.0/5.0
Slides: 11
Provided by: sharon209
Learn more at: http://wirelessman.org
Category:

less

Transcript and Presenter's Notes

Title: Elimination of Repeated Information in Persistent Allocation Sub-burst IEs


1
Elimination of Repeated Information in Persistent
Allocation Sub-burst IEs
  • Yair Bourlas, Nextwave
  • Kamran Etemad, Intel
  • Shantidev Mohanty, Intel
  • Mo-Han Fong, Nortel
  • Geunhwi Lim, Samsung Electronics
  • Jianmin Lu, Huawei Technologies
  • Sean McBeath, Huawei Technologies
  • Changyoon Oh, Samsung Electronics
  • Hua Xu, Motorola

2
MAP Overhead for VoIP
  • VoIP allocations are typically of small size,
    e.g. AMR 12.2Kbps
  • 44 bytes in active state and 18 bytes in inactive
    state
  • Large number of VoIP allocations per frame, e.g.,
    40-50 per frame
  • This leads to large number of Sub-Bursts IEs to
    specify the allocation information (when HARQ is
    used)
  • Large number of Sub-Burst IEs incur high MAP
    overhead adversely affects VoIP capacity
  • Observation Many VoIP allocations have similar
    MCS and/or size.
  • This is because VoIP packet size is same when
    same CODEC is used by all the users and close to
    one another when different CODECs are used by
    different users.
  • These same/similar length VoIP packet sizes
    result in similar allocation size in terms of
    number of slots (for more refer backup slide
    11)
  • The size of Sub-Burst IEs can be reduced by
    exploiting
  • Multiple allocations with the same MCS (used in
    802.16Rev2/D2 for DL Chase HARQ and DL IR HARQ
    for CC) (proposed for other HARQ modes in this
    contribution)
  • Multiple allocations with the same allocation
    size (Proposed in this contribution)

3
Persistent Allocation Sub-Burst IE Optimization
in 802.16Rev2/D3
  • IEEE 802.16Rev2/D3 uses Sub-Burst DIUC
    Indicator flag in Persistent sub-burst IEs
  • to eliminate repetitive indication of MCS in the
    Sub-Burst IEs of N consecutive subbursts having
    same MCS (DIUC and Repetition Coding Indication)
  • Only the Sub-Burst IE of the first one of these N
    subbursts specifies the MCS of allocation
  • The remaining (N-1) Sub-Burst IEs do not specify
    the MCS of allocation
  • A one-bit flag, Sub-Burst DIUC Indicator, is used
    in the Sub-Burst IE to indicate if the MCS of a
    subburst is same as that of the previous subburst
  • This is referred to as MCS Optimization in this
    contribution
  • IEEE 802.16Rev2/D3 Persistent Sub-burst IEs do
    not use similar optimization for other
    information fields such as Duration, Allocation
    Period, N_ACID, MAP NACK Channel Index.

4
Proposed Persistent Sub-Burst IE Optimization
  • When N consecutive subbursts have same
    Duration/Allocation Period/N_ACID/MAP NACK
    Channel Index
  • Only the Sub-Burst IE of the first subburst
    specifies the parameter
  • The remaining (N-1) Sub-Burst IEs do not specify
    the parameter
  • A one bit flag, Duration Indicator, and
    Allocation Period and Index Indicator is used
    in the Sub-Burst IE to indicate if the
    corresponding parameter of a subburst is same as
    the size of the previous sub-burst.

5
An Example Persistent Allocation in a Randomly
Chosen frame
  • Persistent Chase Sub-burst IE
  • IE Index MCS Duration Allocation
    Period N_ACID MAP NACK Channel Index
  • 1 4 8 5
    6 10
  • 2 4 8 5
    6 10
  • 3 3 15 5
    6 10
  • 4 3 15 5
    6 10
  • 5 3 15 5
    6 10
  • 6 3 15 5
    6 10
  • 7 4 8 5
    6 10
  • 8 4 8 5
    6 10
  • 9 3 15 5
    6 10
  • 10 3 15 5
    6 10
  • 11 3 15 5
    6 10
  • 12 3 15 5
    6 10
  • 13 3 15 5
    6 10
  • 14 3 15 5
    6 10
  • 15 3 7 5
    6 10

Observation many VoIP allocations have same
Duration and/or Allocation Period, N_ACID, MAP
NACK Channel Index
6
What is done now for the Example Persistent
Allocation in a Randomly Chosen frame
  • Persistent Chase Sub-burst IE
  • IE Flag 1 MCS Duration Allocation
    N_ACID MAP NACK Index
    Period
    Chanel Index
  • 1 1 4 8 5
    6 10
  • 2 0 8 5
    6 10
  • 3 1 3 15 5
    6 10
  • 4 0 15 5
    6 10
  • 5 0 15 5
    6 10
  • 6 0 15 5
    6 10
  • 7 1 4 8 5
    6 10
  • 8 0 8 5
    6 10
  • 9 1 3 15 5
    6 10
  • 10 0 15 5
    6 10
  • 11 0 15 5
    6 10
  • 12 0 15 5
    6 10
  • 13 0 15 5
    6 10
  • 14 0 15 5
    6 10
  • 15 0 7 5
    6 10

Observation many VoIP allocations have same
Duration and/or Allocation Period, N_ACID, MAP
NACK Channel Index
7
Proposed Optimization for Persistent Sub-Burst IE
in 802.16Rev2/D3 of the Example DL Allocation
  • Persistent Chase Sub-burst IE
  • IE Flag 1 MCS Flag 2 Duration
    Flag 3 Allocation N_ACID MAP NACK
    Index
    Period
    Chanel Index
  • 1 1 4 1 8 1
    5 6
    10
  • 2 0 0
    0
  • 3 1 3 1
    15 0
  • 4 0 0
    0
  • 5 0 0
    0
  • 6 0 0
    0
  • 7 1 4 1 8
    0
  • 8 0 0
    0
  • 9 1 3 1 15
    0
  • 10 0 0
    0
  • 11 0 0
    0
  • 12 0 0
    0
  • 13 0 0
    0
  • 14 0 0
    0
  • 15 0 1
    7 0

Observation many VoIP allocations have same
Duration and/or Allocation Period, N_ACID, MAP
NACK Channel Index
8
Proposed Optimization for Persistent Sub-Burst IE
in 802.16Rev2/D3 of the Example DL Allocation
  • Persistent Chase Sub-burst IE
  • IE Index MCS Duration Allocation
    Period N_ACID MAP NACK Channel Index
  • 1 4 8 5
    6 10
  • 2 4 8 5
    6 10
  • 3 3 15 5
    6 10
  • 4 3 15 5
    6 10
  • 5 3 15 5
    6 10
  • 6 3 15 5
    6 10
  • 7 4 8 5
    6 10
  • 8 4 8 5
    6 10
  • 9 3 15 5
    6 10
  • 10 3 15 5
    6 10
  • 11 3 15 5
    6 10
  • 12 3 15 5
    6 10
  • 13 3 15 5
    6 10
  • 14 3 15 5
    6 10
  • 15 3 7 5
    6 10

Observation many VoIP allocations have same
Duration and/or Allocation Period, N_ACID, MAP
NACK Channel Index
9
Number of DL Slots for a VoIP Packet
MCS Slots active (44 bytes) Slots silence (18 bytes)
10 64 QAM 3/4 STBC (rep. 1) 2 1
11 64 QAM 5/6 STBC (rep. 1) 2 1
12 QPSK ½ SM (rep. 1) 4 2
13 QPSK 3/4 (rep. 1) 3 1
14 16 QAM 1/2 SM (rep. 1) 2 1
15 16 QAM 3/4 SM (rep. 1) 2 1
16 64 QAM 1/2 SM (rep. 1) 2 1
17 64 QAM 2/3 SM (rep. 1) 1 1
18 64 QAM 3/4 SM (rep. 1) 1 1
19 64 QAM 5/6 SM (rep. 1) 1 1
MCS Slots active (44 bytes) Slots silence (18 bytes)
1 QPSK ½ STBC (rep. 6) 44 18
2 QPSK ½ STBC (rep. 4) 30 12
3 QPSK ½ STBC (rep. 2) 15 6
4 QPSK ½ STBC (rep. 1) 8 3
5 QPSK 3/4 STBC (rep. 1) 5 2
6 16 QAM 1/2 STBC (rep. 1) 4 2
7 16 QAM 3/4 STBC (rep. 1) 3 1
8 64 QAM 1/2 STBC (rep. 1) 3 1
9 64 QAM 2/3 STBC (rep. 1) 2 1
Multiple MCS options have similar allocation size
10
Summary
  • The proposed technique is very simple to
    implement
  • Up to 40 MAP reduction
  • Robust against
  • Variable voice codec
  • Variable VoIP packet because of header
    compression, active/silence
  • Applicable when different users use different
    codec
  • Backbone delay variation
  • Useful across all mobility (slow, medium, fast
    users)
Write a Comment
User Comments (0)
About PowerShow.com