Some Basic Limits PowerPoint PPT Presentation

presentation player overlay
1 / 9
About This Presentation
Transcript and Presenter's Notes

Title: Some Basic Limits


1
Some Basic Limits
  • Limx-gtc b b
  • Limx-gtc x c
  • Limx-gtcxn cn

2
Properties of Limits
  • Let b and c be real numbers, n a positive
    integer, and F and G functions so that
  • Limx-gtcF(X) L and
  • Limx-gtcG(x) K.

3
Then
  • Limx-gtcbF(x) bL
  • Limx-gtcF(x) ? G(x) L ? K
  • Limx-gtcF(x)G(x) LK
  • Limx-gtc F(x)/G(X) L/K, if K ? 0
  • Limx-gtc F(x)n Ln

4
Two more Properties
  • If p(x) is a polynomial, then limx-gtcp(x) p(c).
  • If r(x) p(x)/q(x) is a rational function and
    q(c) ? 0, then limx-gtcp(x)/q(x) p(c)/q(c).

5
Composite Functions
  • If F and G are functions so that limx-gtcG(x) L
    and limx-gtc F(x) F(L) then
  • limx-gtc F(G(x)) F(L)

6
Trigonometric Functions
  • Limx-gtc sin(x) sin(c)
  • Limx-gtc cos(x) cos(c)
  • Limx-gtc tan(x) tan(c)
  • Limx-gtc cot(x) cot(c)
  • Limx-gtc sec(x) sec(c)
  • Limx-gtc csc(x) csc(c)

7
Another Limit Theorem
  • If F(X) G(X) for all x? c in an open interval
    containing c , then if both F(x) and G(X) have a
    limit as x approaches c, then
    Limx-gtcF(x) Limx-gtc G(x).

8
The Squeeze Theorem
  • If H(x) lt F(x) lt G(x) for all x in an open
    interval containing c, except possibly at c
    itself, and if Limx-gtc H(x) Limx-gtc G(x) L,
    then Limx-gtc F(x) L.

9
Two Important Trigonometric Limits
  • Limx-gt0 sin(x)/x 1
  • Limx-gt0 (1 cos(x)/x 0
Write a Comment
User Comments (0)
About PowerShow.com