Title: Atomistic modeling of minerals and melts using advanced interatomic potentials
1Atomistic modeling of minerals and melts using
advanced interatomic potentials
- Sandro Jahn
- GeoForschungsZentrum Potsdam
2Atomistic simulations in Earth sciences
- minerals and melts of the Earths crust and
mantle under extreme conditions of P/T - complex oxides and silicates
- atomistic simulations allow
- direct access to the individual atoms and to the
electronic structure - easy access to extreme P/T conditions
- predictive power where experimental studies are
difficult or not feasible - need for accurate and transferable potentials
3Modeling ionic materials
- Coulomb interaction
- short-range repulsion
- dispersion (van der Waals)
- polarization
- spherical breathing, dipolar quadrupolar shape
deformations
4Potential fitting
- Potential with 20-30 parameters
- Optimized by fitting to reference DFT calculations
Aguado et al, Faraday Discuss. 124, 171 (2003)
5Fit configurations
- Al2O3
- bixbyite, corundum, melt, ortho-perovskite,
Rh2O3(II) - MgO
- rocksalt, CsCl, sphalerite
- SiO2
- ?-quartz, ?-cristobalite, stishovite
- MgAl2O4
- spinel, Ca-ferrite, Ca-titanite
- MgSiO3
- ortho-perovskite, post-perovskite
6Potential fitting
- calculate ab initio forces, dipoles, quadrupoles
and stress tensors for the different static
configurations - AIM potential with initial guess of parameters
- Minimize objective functions by variation of a
set of parameters X and calculation of the AIM
forces etc. - A(X)1/N ?j (Yj(X)-YjAI)2 / (YjAI)2
7MD Simulations using the AIM
- potential contains 17 additional degrees of
freedom from induced multipoles and ion shape
deformations - use conjugate gradient routines to search for
ground state configuration of the electronic
degrees of freedom before calculating the forces
on the ions - hence potential seen by the ions differs in each
time step (many body character of interaction)
8Transferability test 1 Al2O3
- transferability of the potential to
- high pressures
- high temperatures
- different coordination environment
- examples
- bulk and surface properties of corundum
- high pressure polymorphs
- alumina melt
9P-V curve for corundum
10Thermal expansion of corundum
11Corundum phonons
12High pressure polymorphic phases
corundum stable up to 100 GPa
Rh2O3(II) structure (gt 100 GPa)
orthorhombic perovskite, possible high pressure
phase
13corundum (MgSiO3 akimotoite)
Rh2O3(II) structure (Al2O3)
orthorhombic perovskite (MgSiO3)
Jahn et al PRB 69, 020106 (2004)
14Enthalpy curves of Al2O3 polymorphsrelative to
corundum
DFT-GGA, AIM-GGA
DFT-LDA, AIM-LDA
15Corundum (0001) surface relaxation
before relaxation
after relaxation
16Corundum (0001) surface relaxation
atomic layer DFT-GGA (Ruberto et al, PRB 2003) AIM-LDA AIM-GGA
1st (Al-O) -85 -87 -85
2nd (O-Al) 3.2 5.8 5.0
3rd (Al-Al) -45 -42 -44
4th (Al-O) 20 20 19
17x-ray Ansell et al, PRL 78 (1997) 464 neutron
Landron et al, PRL 86 (2001) 4839
18Sound velocities in melts
Al2O3 melt full line simulation symbols
inelastic x-ray scattering experiment (Sinn et
al, Science, 299, 2047 (2003)
19Sound propagation in alumina melt
solid line experimental result vp7350
m/s (Sinn et al, Science, 299, 2047
(2003) symbols dispersions of longitudinal
modes from MD simulation
205-6 coordinate 3-4 coordinate Presence of high
and low density liquid domains? Average
coordination number 4.5
21pressure dependence of g(r)
Rigid ion model Hoang et al, JPCM (2005)
22coordination under pressure
23(No Transcript)
24self-diffusion under pressure
25Transferability test 2 Silicates
- transferability of the potential to
- different chemical compositions
- high P and T
- different coordination environment
- examples
- structure and elastic constants of spinels,
Mg2SiO4 Al2SiO5 polymorphs - SiO2 and MgSiO3 melts
26Elastic constants
- optimize cell parameters (T0)
- lattice parameters (a, b, c, ?, ?, ?)
- atomic positions
- finite cell strain
- calculate stress tensor in short MD simulation
(T50 K)
27Lattice parameters and elastic constants of
spinel-type minerals
a/Å C11/GPa C12/GPa C44/GPa
MgAl2O4
Simulation 8.019 263 190 152
Experiment 8.083 282 154 154
?-Mg2SiO4
Simulation 7.982 357 128 130
Experiment 8.065 327 112 126
28Elastic constants of ?- and ?-Mg2SiO4
? (Simul.) ? (Exp.) ? (Simul.) ? (Exp.)
a/Å 4.732 4.753 5.637 5.698
b/Å 10.186 10.190 11.336 11.438
c/Å 5.947 5.978 8.235 8.257
C11/GPa 326 328 367 360
C22/GPa 188 200 367 383
C33/GPa 232 235 262 273
C44/GPa 62 67 95 112
C55/GPa 78 81 110 118
C66/GPa 82 81 104 98
C12/GPa 84 69 82 75
C13/GPa 82 69 103 110
C23/GPa 80 73 107 105
29Al2SiO5 polymorphs
andalusite
sillimanite
5 6 fold Al coordination
4 6 fold Al coordination
30Al2SiO5 polymorphs
Andalusite (Simul.) Andalusite (Exp.) Sillimanite(Simul.) Sillimanite (Exp.)
a/Å 7.662 7.798 7.42 7.488
b/Å 7.768 7.903 7.53 7.681
c/Å 5.472 5.557 5.73 5.777
C11/GPa 210 233 286 287
C22/GPa 262 289 214 232
C33/GPa 367 380 459 388
C44/GPa 82 100 94 122
C55/GPa 76 88 61 81
C66/GPa 108 112 73 89
C12/GPa 95 98 114 159
C13/GPa 119 116 108 83
C23/GPa 100 81 150 95
31Silica and silicate melt
- preliminary results
- SiO2 melt (1944 atoms, T2000K)
- molar volume (Vm40 Å3) about 11 lower than
experimental value (45 Å3) - MgSiO3 melt (2160 atoms, T2000K)
- molar volume 3 lower than experiment at T1913K
32Conclusion
- advanced interatomic potentials - a promising
tool for atomistic simulation of minerals and
melts - defect structures in minerals at high P/T
- crystallization, melts, interfaces
- structural phase transitions, polymorphism
- transport properties, diffusion
- long term goal a set of accurate and
transferable potentials for a wide range of
minerals
33Acknowledgements
- Paul Madden (Edinburgh)
- Mark Wilson (London)
- Andres Aguado (Valladolid)
- Leonardo Bernasconi (Cambridge)
34(No Transcript)
35MgO phonons at high P
B1 (NaCl) P400GPa B2 (CsCl)
P600GPa
lines DFT (A. R. Oganov et al, JCP
(2003)) symbols AIM (A. Aguado et al, PRB (2004))