Optoelectronic Parallel Computing with its Applications - PowerPoint PPT Presentation

1 / 51
About This Presentation
Title:

Optoelectronic Parallel Computing with its Applications

Description:

A hybrid Structure using optical and electronic links to support massive parallel processing ... Lemma 1: If we start with (1, T 1), T = Ceil (L / 2) ... – PowerPoint PPT presentation

Number of Views:47
Avg rating:3.0/5.0
Slides: 52
Provided by: acme6
Category:

less

Transcript and Presenter's Notes

Title: Optoelectronic Parallel Computing with its Applications


1
Optoelectronic Parallel Computing with its
Applications
IWLSC-06, 8-10 Feb.
2
IWLSC-06, 8-10 Feb
3
Optoelectronic Parallel computers
A hybrid Structure using optical and electronic
links to support massive parallel processing An
Example OTIS (Optical Transpose
Interconnection System) Proposed by Marsden et
al. in Optics Letter, 18 (1993) 1083-1085
IWLSC-06, 8-10 Feb.
4
Background
  • Why Hybrid?
  • Processors are spreaded over several levels of
    packaging hierarchy

IWLSC-06, 8-10 Feb.
5
Why Hybrid (Contd)
  • Advantages of Optical Links over Electrical Links
  • 1. Higher speed
  • Use of light pulses
  • Wave guides support Pipelining
  • 2. Less cross talk
  • Sharing of optical bus
  • Only one message on a shared
    electronic bus

IWLSC-06, 8-10 Feb.
6
Why Hybrid Advantages (Contd..)
  • 3. Less Power Consumption
  • Power requirement nearly independent of
    lengths
  • References
  • M. Feldman et al. in Applied Optics, 27(9),
    1998,1742-1751
  • F. Kiamilev et al. In Journal of
    Lightwave Technology, 9(12), 1991

IWLSC-06, 8-10 Feb.
7
Why Hybrid (Contd)
  • Electronic links are very efficient if the
    distance is up to few millimeters
  • Conclusion
  • Use optical links for far processors and
    electronic links for near processors A Hybrid.

IWLSC-06, 8-10 Feb.
8
OTIS organization
  • Processors are divided into groups
  • Each group contains several processors
  • Electronic links for intra-group and optical
    links for inter-group processors.
  • (G, P) is connected to (P, G)

IWLSC-06, 8-10 Feb.
9
Group 1
Group 2
1,2
2,2
1,1
2,1
 
1,4
2,4
1,3
2,3
3,2
4,2
3,1
4,1
3,4
4,4
3,3
4,3
Group 2
Group 3
Group 4
16 Processors OTIS Mesh

IWLSC-06, 8-10 Feb.
10
OTIS Models
  • OTIS Mesh
  • OTIS Hypercube
  • OTIS Ring
  • OTIS Mesh of Trees

IWLSC-06, 8-10 Feb.
11
Existing Parallel algorithms on Optoelectronic
Models
  • 1 C. F. Wang and S. Sahni, Basic operations on
    the OTIS-Mesh optoelectronic computer, IEEE
    Trans. On Parallel and Distributed Systems Vol.
    9, No. 12, pp. 12261998. December, 1998.
  • 2 K. Day, Topological Properties of
    OTIS-Networks, IEEE Trans. On Parallel and
    Distributed Systems Vol. 13, No. 4, pp.
    359-3661998. April, 2002
  • 3 A. Datta, Summation and Routing on a
    Partitioned Optical Passive Stars Network with
    large Group Size, IEEE Trans. On Parallel and
    Distributed Systems Vol. 14, No. 12,
    pp.1275-1285, 2003.
  • 4 J. Lie, Yi Pan and H. Shen, Subalgorithmic
    Deterministic Selection on Arrays with a
    Reconfigurable Optival Bus, IEEE Trans. On
    Computers Vol. 51, No. 6, pp. 702707. June,
    2002.

IWLSC-06, 8-10 Feb.
12
5 A. Osterloh, Sorting on the OTIS-Mesh,
Proc. 14th Int. Parallel and Distributed
Processing Symposium (IPDPS 2000), pp. 269-274,
2000. 6 C. F. Wang and S. Sahni, Matrix
multiplication on the OTIS-Mesh optoelectronic
computer, IEEE Trans. On Computers,Vol.50, No.
7, pp. 635646, July, 2001. 7 S. Sahni and
C.F.Wang, BPC permutations on the OTIS-Mesh
optoelctronic computer, Proc. Fourth Intl.
Conference Massively Parallel Processing Using
Optical Interconnections (MIPPOI 97), pp.
130-135, 1997.8 S. Rajasekaran and S. Sahni,
Randomized routing, Selection, and Sorting on
the OTIS-Mesh optoelectronic computer, IEEE
Trans. On Parallel and Distributed Systems Vol.
9, No. 9, pp. 833-840, 1998.
IWLSC-06, 8-10 Feb.
13
9 C. F. Wang and S. Sahni, Image processing on
the OTIS-Mesh optoelectronic computer, IEEE
Trans. On Parallel and Distributed Systems Vol.
11, No. 2, pp. 97109. December, 1998. 10 P.
K. Jana, Polynomial interpolation on OTIS-Mesh
optoelctronic computers, Distributed
Computing-IWDC 2004 Lecture notes in computer
Science (Springer), Heidelberg, pp. 373-378,
2004.11 P. K. Jana, Improved Parallel Prefix
Computation on Optical Multi-Trees , in
Proceedings of IEEE Indicon 2004,
IITKharagpur, India, 20 - 22 Dec. 2004, pp.
414-418. 12 P. K. Jana and Koushik Sinha Bit
reversal permutation on optical multi-trees
(OMULT), in Proceedings of 12th International
conference on Advanced computing and
communications(ADCOM 2004), Ahmedabad, India,
15-18 December 2004.
IWLSC-06, 8-10 Feb.
14
Prefix Problem
  • Given N data values x1, x2, , xN compute
  • Pi x1 o x2 o x3 o o xi , 1 i N
  • where o is an associative binary operation
  • Expanded form
  • P1 x1
  • P2 x1 o x2
  • P3 x1 o x2 o x3
  • ?
  • PN x1 o x2 o x3 o o xN

IWLSC-06, 8-10 Feb.
15
Sequential Algorithm P1 x1 Pi Pi-1 o xi
i ? 2 Requires O(n) time
IWLSC-06, 8-10 Feb.
16
Applications of Prefix Computation
  • Knapsack Problem
  • Job Sequencing with deadline
  • Compiler Design
  • Computational Biology
  • Evaluation of Polynomials
  • Solving System of Linear Equations
  • Polynomial Interpolation

IWLSC-06, 8-10 Feb.
17
Our Proposed Algorithmon OTIS Mesh
  • For n-point prefix on an OTIS mesh using n
    processors
  • In 5.5n ¼ 3 Electronics move 2 OTIS move

IWLSC-06, 8-10 Feb.
18
IWLSC-06, 8-10 Feb.
19
Initialization
IWLSC-06, 8-10 Feb.
20
  • 1 5 9 13 65 69 73 77
    129 133 137 141 193 197 201
    205
  • 2 6 10 14 66 70 74 78
    130 134 138 142 194 198 202
    206
  • 4 8 12 16 68 72 76 80
    132 136 140 144 196 200 204
    208
  • 3 7 11 15 67 71 75 79
    131 135 139 143 195 199 203
    207
  • 17 21 25 29 81 85 89 93
    145 149 153 157 209 213 217
    221
  • 18 22 26 30 82 86 90 94
    146 150 154 158 210 214 218
    222
  • 20 24 28 32 84 88 92 96
    148 152 156 160 212 216 220
    224
  • 19 23 27 31 83 87 91 95
    147 151 155 159 211 215 219
    223
  • 53 57 61 113 117 121 125 177
    181 185 189 241 245 249 253
  • 54 58 62 114 118 122 126 178
    182 186 190 242 246 250 254
  • 52 56 60 64 116 120 124 128
    180 184 188 192 244 248 252
    256
  • 51 55 59 63 115 119 123 127
    179 183 187 191 243 247 251
    255
  • 33 37 41 45 97 101 105 109
    161 165 169 173 225 229 233
    237
  • 34 38 42 46 98 102 106 110
    162 166 170 174 226 230 234
    238
  • 36 40 44 48 100 104 108 112
    164 168 172 176 228 232 236
    240
  • 35 39 43 47 99 103 107 111
    163 167 171 175 227 231 235
    239

IWLSC-06, 8-10 Feb.
21
1-1 1-5 1-9 1-13
65-65 129-129
193-194 1-2 1-6 1-10 1-14 1-4 1-8 1-12
1-16 65-80 129-144
193-208 1-3 1-7 1-11 1-15 17-17
81-81 145 -145 209-209
17-32 81-96
145-160 209-224 49-49 113-113
177 -177 241-241
49-64 113-128
177-192 241-256 33-33 97-97
161-161 225-225 33-48
97-112
161-176 225-240
Block Prefix Computation Time 2n¼ 1
Electronics Move
IWLSC-06, 8-10 Feb.
22
1-1 1-5 1-9 1-13 65-65
129-129 193-194 1-2 1-6 1-10
1-14 1-4 1-8 1-12 1-16 65-80
129-144 193-208 1-3 1-7 1-11
1-15 17-17 81-81 145 -145
209-209 17-32
81-96 145-160
209-224 49-49 113-113 177 -177
241-241 49-64
113-128 177-192
241-256 33-33 97-97 161-161
225-225 33-48
97-112
161-176 225-240 OTIS Move (All moves are
not shown) TimeOne OTIS move
23
1-16 65-80 129-144 193-208 17-32
81-96 145-160 209-224 49-64 113-128
177-192 241-256 33-48 97-112 161-176
225-240
Result After OTIS Move
IWLSC-06, 8-10 Feb.
24
0 1-64 1-128 1-192 1-16
1-80 1-144 1-208 1-48 1-112
1-176 1-240 1-32 1-96 1-160
1-224
Modified Prefix Time 2n¼ 3 Electronics Move
IWLSC-06, 8-10 Feb.
25
193-193 193-208
129-129 129-144
65-65 65-80
1-1 1-16
209-209 209-224
145-145 145-160
81-81 81-96
17-17 17-32
0 1-64 1-128 1-192 1-16 1-80
1-144 1-208 1-48 1-112 1-176
1-240 1-32 1-96 1-160 1-224
177-177 177-192
113-113 113-128
49-49 49-64
225-225 225-241
161-161 161-176
97-97 97-112
33-33 33-48
OTIS Move Time One OTIS Move
26
1-193 1-208
1-129 1-144
1-65 1-80
1-1 1-16
1-209 1-224
1-145 1-160
1-81 1-96
1-17 1-32
1-177 1-192
1-113 1-128
1-49 1-64
1-241 1-256
1-225 1-240
1-161 1-176
1-97 1-112
1-33 1-48
Final Result by broadcasting Time 1.5n¼ -1
Electronics Move
IWLSC-06, 8-10 Feb.
27
Overall Time Complexity 5.5n¼ 3 Electronics
moves 2 OTIS moves
IWLSC-06, 8-10 Feb.
28
ALL-To-All Communications on OTIS-Ring
Problem Statement Each processor holds one
message and sends the same to every other
processor. Also Known as Gossiping /
Total-exchange / All-broadcast
IWLSC-06, 8-10 Feb.
29
All-to-All Communication
P1
P2
Pn-1
Pn
P1
P2
Pn-1
Pn
IWLSC-06, 8-10 Feb.
30
Applications of All-to-All Broadcast
  • Matrix-matrix multiplication
  • Matrix-vector multiplication
  • Extreme finding
  • Reduction
  • Prefix computation

IWLSC-06, 8-10 Feb.
31
Polynomial Interpolation
Given a set of functional values say, y1, y2, ?,
yN, at some discrete points x1, x2, ?, xN, the
problem of interpolation is to evaluate the
function at some intermediate point x where, x1 lt
x lt xN. N-point Lagrange formula Where
and
IWLSC-06, 8-10 Feb.
32
N-point Hermite formula where
Li (x)
Li (x)
IWLSC-06, 8-10 Feb.
33
Expanded form
(xi-x1)(xi-2)(xi-xi-1)(xi-xi1)(xi-xN), i 1,
2, N
IWLSC-06, 8-10 Feb.
34
Goertzel Ben, Lagrange interpolation on a
processor tree with ring connection, J. of
Parallel and Distributed Computing. Vol. 22,
No. 2(1994) 321-323.
IWLSC-06, 8-10 Feb.
35
1 X1 X1 X1
1 X2 X2 X2
1 X5 X5 X5
1 X4 X4 X4
1 X3 X3 X3
IWLSC-06, 8-10 Feb.
36
(X1-X5)(X1-X2) X5 X2
X1
(X2-X1)(X2-X3) X1
X3 X2
(X5-X4)(X5-X1) X4
X1 X5
(X3-X2)(X3-X4) X2 X4
X3
(X4-X3)(X4-X5) X3
X5 X4
IWLSC-06, 8-10 Feb.
37
(X1-X5)(X1-X2) (X1-X4)(X1-X3)
X4 X3
X1
(X2-X1)(X2-X3) (X2-X5)(X2-X4)
X5 X4
X2
(X5-X4)(X5-X1) (X5-X3)(X5-X2)
X3 X2
X5
(X3-X2)(X3-X4) (X3-X1)(X3-X5)
X1 X5
X3
(X4-X3)(X4-X5) (X4-X2)(X4-X1)
X2 X1
X4
IWLSC-06, 8-10 Feb.
38
An open problem If there exists a length-L
Hamiltonian cycle in G (Group), then there exists
a length-L2 hamiltonian cycle in OTIS-G   Khaled
Day, et al. Topological properties of
OTIS-Networks, IEEE TPDS, Vol. 13, N0. 4, April,
2002.  
IWLSC-06, 8-10 Feb.
39
1, 1
1, 2
1, 5
1, 3
1, 4
2, 1
5, 1
5, 2
5, 5
2, 2
2, 5
2, 3
5, 4
5, 3
2, 4
3, 1
4, 1
3, 2
3, 5
4, 2
4, 5
4, 3
4, 4
3, 4
3, 3
Hamiltonian cycle
IWLSC-06, 8-10 Feb.
40
Lemma 1 If we start with (1, T 1), T Ceil (L
/ 2), we can always find a Hamiltonian cycle if
L is odd Proof In short notation, the result
is   (1, T1) CR (1, T ) OM (T, 1) CR (T, L)
OM (L,T ) CR (L, T - 1) OM (T- 1, L) CR (T - 1,
L -1) OM (L 1, T - 1) CR(L 1, T - 2) (T 1,
1) OM (1, T 1)
IWLSC-06, 8-10 Feb.
41
An example for L 7   (1,5) CR (1,4) OM (4,1) CR
(4,7) OM (7,4) CR (7,3) OM (3,7) CR (3,6) OM
(6,3) CR (6,2) OM (2,6) CR (2,5) OM (5,2) CR (
5,1) OM (1,5).
                 
 
S 1, 4, 7, 3, 6, 2, 5, 1. Two Divisions
S1 1, 7, 6, 5 S2 4, 3, 2, 1
1
2
7
3
6
4
5
IWLSC-06, 8-10 Feb.
42
Fails for even value of L   For Example, L
6 (1,4)CR(1,3)OM(3,1)CR(3,6)OM(6,3)CR(6,2)OM(2,6)
CR(2,5) OM(5,2)CR(5,1)OM(1,5)
           
1
2
S 1, 3, 6, 2, 5, 1 S1 1, 6, 5 and S2
3, 2, 1
3
6
4
5
IWLSC-06, 8-10 Feb.
43
Hamiltonian cycle
IWLSC-06, 8-10 Feb.
44
References On OTIS Models O
1 G. C. Marsden, P.J. Marchand, P. Harvey
and S. C. Esener, Optical transpose
interconnection system architectures, Optics
Letters, Vol. 18, No. 13, pp. 1083-1085, July,
1993. 2 F. Zane, P. Marchand, R. Paturi and
S. Esener, Scalable network architectures using
the optical transpose interconnection system
(OTIS), J. of Parallel and Distributed
Computing, Vol. 60 No. 5, pp. 521-538, 2000.
3 C. F. Wang and S. Sahni, OTIS
optoelectronic computers, Parallel Computation
Using Optical Interconnections, K. Li, Y. Pan and
S.Q.Zhang, Eds. Kluwer Academic, 1998. 4 S.
Sahni, Models and Algorithms for Optical and
Optoelectronic Parallel computers,
IWLSC-06, 8-10 Feb.
45
References
5 C. F. Wang and S. Sahni, Basic operations on
the OTIS-Mesh optoelectronic computer, IEEE
Trans. On Parallel and Distributed Systems Vol.
9, No. 12, pp. 12261998. December, 1998. 6
Egecioglu and A. Srinivasan, Optimal Parallel
Prefix on mesh architecture. Parallel Algorithms
and Applications 1 (1993), 191209. 7 P. K.
Jana, B. D. Naidu, S. Kumar, M. Arora, and B.
P. Sinha, Parallel prefix computation on
extended multi-mesh network, Information
Processing Letters, Vol. 84, No. 6, pp. 295-303,
October 2002 8 S.G.Akl, The Design and
Analysis of Parallel Algorithms. Englewood
Cliffs, NJ Prentice Hall, 1989.  9 S.
Rajasekaran and S. Sahni, Randomized routing,
Selection, and Sorting on the OTIS-Mesh
optoelectronic computer, IEEE Trans. On Parallel
and Distributed Systems Vol. 9, No. 9, pp.
833-840, 1998.
IWLSC-06, 8-10 Feb.
46
    References (Conti)   10 C. F. Wang
and S. Sahni, Image processing on the OTIS-Mesh
optoelectronic computer, IEEE Trans. On Parallel
and Distributed Systems Vol. 11, No. 2, pp.
97109. December, 1998. 11 C. F. Wang and S.
Sahni, Matrix multiplication on the OTIS-Mesh
optoelectronic computer, IEEE Trans. On
Computers, Vol. 50, No. 7, pp. 635646, July,
2001. 12 A. Osterloh, Sorting on the
OTIS-Mesh, Proc. 14th Intl. Parallel and
Distributed Processing Symposium (IPDPS 2000),
pp. 269-274, 2000. 13 S. Sahni and C.F.wang,
BPC permutations on the OTIS-Mesh optoelctronic
computer, Proc. Fourth Intl. Conference
Massively Parallel Processing Using Optical
Interconnections (MIPPOI 97), pp. 130-135,
1997. 14 Chih-Fang. Wang, and S. Sahni, OTIS
Optielectronic Computers, Parallel computation
using optical interconnection, K. Li, Y. Pan and
S. Q. Zhag Eds Kluwer Academic, 1998.
IWLSC-06, 8-10 Feb.
47
Thank You
IWLSC-06, 8-10 Feb.
48
Modified Prefix on mesh
  • 1 7 13 19 25 31 0
    0 0 0 0
    0
  • 2 8 14 20 26 32 1
    7 13 19 25
    31
  • 3 9 15 21 27 33 1-2
    7-8 13-14 19-20 25-26 31-32
  • 3 9 15
    21 27 33
  • 6 12 18 24 30 36 4-5
    10-11 16-17 22-23 28-29 34-35
  • 5 11 17 23 29 35 6
    12 18 24 30
    36
  • 4 10 16 22 28 34 4
    10 16 22 28
    34
  • 0 0 0
    0 0 0

Step1 Data Initially stored
Step 2 (0.5 n¼ - 1 steps)
IWLSC-06, 8-10 Feb.
49
Modified Prefix on Mesh
(Conti..) 0 0 0 0
0 0 0 0
0 0 0 0 1
7 13 19 25 31
1 7 13 19 25
31 1-2 6-8 12-14 18-20 24-26
30-32 1-2 3-8 9-14 15-20
21-26 27-32 6 12
18 24 30 6
12 18 24 303-5
9-11 15-17 21-23 27-29 33-35 1-5
6-11 12-17 18-23 24-29 30-35 3 9
15 21 27 33
3 9 15 21
27 33 4 10
16 22 28 34
4 10 16 22
28 34 0 0
0 0 0 0
0 0 0 0 0
0
Step 4 (2 steps)
Step 3 (2 steps)
IWLSC-06, 8-10 Feb.
50
Modified Prefix on Mesh (Conti)
  • 0 6 12 18 24
    30 0 1-6 1-12 1-18
    1-24 1-30 1 6-7 12-13 18-19
    24-25 30-31 1 1-7 1-13
    1-19 1- 25 1- 31 1-2 1-8 1-14
    1-20 1-26 1-32 1-2 1-8
    1-14 1-20 1-26 1-32 1-5
    1-11 1-17 1-23 1-26 1-32
    1-5 1-11 1-17 1-23 1-29
    1-353-4 9-10 15-16 21-22 27-28 33-34
    1-4 1-10 1-16 1-22 1-28
    1-34 3 9 15 21
    27 33 1-3 1-9 1-15
    1-21 1-27 1-33

Step 6 (0.5 n¼ 1 steps)
Step 5 (n¼ - 1 steps)
Total Time 2n¼ 3 steps
IWLSC-06, 8-10 Feb.
51

00
01
33 32 31 30
02
03
10 11 12 13
23 22 21 20
20 21 22 23
13 12 11 10
03 02 01 00
30 31 32 33
Side View of OTIS with 16 processors
IWLSC-06, 8-10 Feb.
Write a Comment
User Comments (0)
About PowerShow.com