Domain Theory and Differential Calculus - PowerPoint PPT Presentation

About This Presentation
Title:

Domain Theory and Differential Calculus

Description:

iff x1, x2 ao & x1 x2 , b(x1 x2) f(x1) f(x2) b(x1 x2), i.e. ... (f,g) Cons iff there is a continuous h: dom(g) R. with f Ih and g ... – PowerPoint PPT presentation

Number of Views:38
Avg rating:3.0/5.0
Slides: 50
Provided by: markokr
Category:

less

Transcript and Presenter's Notes

Title: Domain Theory and Differential Calculus


1
Domain Theory and Differential Calculus
Abbas Edalat Imperial College http//www.doc.i
c.ac.uk/ae
Joint work with Andre Lieutier
Dassault Systemes
Oxford 17/2/2003
2
Computational Model for Classical Spaces
  • A research project since 1993
  • Reconstruct some basic mathematics
  • Embed classical spaces into the set of maximal
    elements of suitable domains

3
Computational Model for Classical Spaces
  • Previous Applications
  • Fractal Geometry
  • Measure Integration Theory
  • Exact Real Arithmetic
  • Computational Geometry/Solid Modelling

4
Non-smooth Mathematics
Smooth Mathematics
  • Geometry
  • Differential Topology
  • Manifolds
  • Dynamical Systems
  • Mathematical Physics
  • .
  • .
  • All based on differential
    calculus
  • Set Theory
  • Logic
  • Algebra
  • Point-set Topology
  • Graph Theory
  • Model Theory
  • .
  • .

5
A Domain-Theoretic Model for Differential
Calculus
  • Indefinite integral of a Scott continuous
    function
  • Derivative of a Scott continuous function
  • Fundamental Theorem of Calculus
  • Domain of C1 functions
  • (Domain of Ck functions)
  • Picards Theorem
    A data-type for differential
    equations

6
The Domain of nonempty compact Intervals of R
  • (IR, ?) is a bounded complete dcpo ?i?I ai
    ?i?I ai
  • a b ? ao ? b
  • (IR, ?) is ?-continuous
  • Basis p,q p lt q p, q ? Q
  • (IR, ?) is, thus, a continuous Scott domain.
  • Scott topology has basis ?a b a b

7
Continuous Functions
  • Scott continuous maps 0,1 ? IR with
    f ? g ? ?x ? R . f(x) ? g(x)is another
    continuous Scott domain.
  • ? C00,1 ? ( 0,1 ? IR), with f ?
    Ifis a topological embedding into a proper
    subset of maximal elements of 0,1 ? IR .

8
Step Functions
  • Finite lubs of consistent single step functions

  • ?1?i?n(ai ? bi)
  • with ai, bi rational intervals, give a basis
    for
  • 0,1 ? IR

9
Step Functions-An Example
R
b3
a3
b1
b2
a1
a2
0
1
10
Refining the Step Functions
R
b3
a3
b1
a1
b2
a2
0
1
11
Operations in Interval Arithmetic
  • For a a, a ? IR, b b, b ? IR,and ?
    , , ? we have a b xy x ?
    a, y ? b
  • For example
  • a b a b, a b

12
The Basic Construction
  • What is the indefinite integral of a single step
    function a?b ?
  • We expect ? a?b ? (0,1 ? IR)
  • For what f ? C10,1, should we have If ? ? a?b
    ?
  • Intuitively, we expect f to satisfy

13
Interval Derivative
14
Definition of Interval Derivative
  • f ? (0,1 ? IR) has an interval derivativeb ?
    IR at a ? I0,1 if ?x1, x2 ? ao,
  • b(x1 x2) ? f(x1) f(x2).
  • The tie of a with b, is
  • ?(a,b) f ?x1,x2 ? ao. b(x1 x2) ?
    f(x1) f(x2)

15
For Classical Functions
Thus, ?(a,b) is our candidate for ? a?b .
16
Properties of Ties
  • ?(a1,b1) ? ?(a2,b2) iff a2 ? a1 b1 ? b2
  • ?ni1 ?(ai,bi) ? ? iff ai?bi 1? i ? n
    consistent.
  • ?i?I ?(ai,bi) ? ? iff ai?bi i?I
    consistent iff ?J ?finite I ?i?J
    ?(ai,bi) ? ?
  • In fact, ?(a,b) behaves like a?b
    we call ?(a,b) a single-step tie.

17
The Indefinite Integral
  • ? (0,1 ? IR) ? (P(0,1 ? IR), ? )
  • (
    P the power set)
  • ? a?b ?(a,b)
  • ? ?i ?I ai ? bi ?i?I ?(ai,bi)
  • ? is well-defined and Scott continuous.
  • But unlike the classical case, ? is not 1-1.

18
Example
  • (0,1/2 ? 0) ? (1/2,1 ? 0) ? (0,1 ?
    0,1)
  • ?(0,1/2 , 0) ? ? (1/2,1 ? 0) ? ? (0,1 ?
    0,1)
  • ?(0,1 , 0)
  • ? 0,1 ? 0

19
The Derivative Operator
  • (I0,1 ? IR) ? (I0,1 ? IR)is
    monotone but not continuous. Note that the
    classical operator is not continuous either.
  • (a?b) ?x . ?
  • is not linear! For f x ? x I0,1
    ? IR g x ?
    x I0,1 ? IR
  • (fg) ? ?x . (1 1) ?x
    . 0

20
The Derivative
21
Examples
22
Domain of Ties, or Indefinite Integrals
  • Recall ? (0,1 ? IR) ? (P(0,1 ? IR), ? )
  • Domain of ties ( T0,1 , ? )
  • Theorem. ( T0,1 , ? ) is a continuous Scott
    domain.

23
The Fundamental Theorem of Calculus
  • Define (T0,1 , ?) ? (0,1 ? IR)
  • ? ? ? f ?
    ?

24
Fundamental Theorem of Calculus
  • For f, g ? C10,1, let f g if f g r, for
    some r ? R.
  • We have

25
F.T. of Calculus Isomorphic version
  • For f , g ? 0,1 ? IR, let f g if f
    g a.e.
  • We then have

26
A Domain for C1 Functions
  • What pairs ( f, g) ? (0,1 ? IR)2 approximate a
    differentiable function?

27
Function and Derivative Consistency
  • Define the consistency relationCons ? (0,1 ?
    IR) ? (0,1 ? IR) with(f,g) ? Cons if
    (?f) ? (? g) ? ?
  • In fact, if (f,g) ? Cons, there are always a
    least and a greatest functions h with the above
    properties.

28
Consistency for basis elements
  • (?i ai?bi, ?j cj?dj) ? Cons is a finitary
    property
  • (f,g) ? Cons iff L(f,g) ?G(f,g) . Cons is
    decidable on the basis.
  • Up(f,g) (fg , g) where fg t ?
    L(f,g)(t) , G(f,g)(t)

29
The Domain of C1 Functions
  • Lemma. Cons ? (0,1 ? IR)2 is Scott closed.
  • Theorem.D1 0,1 (f,g) ? (0,1?IR)2 (f,g)
    ? Consis a continuous Scott domain, which can be
    given an effective structure.
  • Theorem.??? C10,1 ? C00,1 ? (0,1 ? IR)2
  • restricts to give a topological embedding
  • D1c ? D1
    (with C1 norm) (with Scott topology)

30
Higher Interval Derivative
31
Higher Derivative and Indefinite Integral
  • For f 0,1 ? IR we define 0,1 ?
    IR by
  • Then ?f ? ?2(a,b) a?b
  • ? (0,1 ? IR) ? (P(0,1 ? IR), ? )
  • ? a?b ? (a,b)
  • ? ?i ?I ai ? bi ?i?I ? (ai,bi)
  • ? is well-defined and Scott continuous.

(2)
(2)
2
(2)
2
(2)
32
Domains of C 2 functions
  • Theorem. Cons (f0,f1,f2) is decidable on basis
    elements.
  • (The present algorithm to check is NP-hard.)
  • D2 (f0,f1,f2) ? (I0,1?IR)3 Cons
    (f0,f1,f2)
  • Theorem. ????? restricts to give a topological
    embedding D2c ? D2

33
Domains of C k functions
  • The decidability of Cons on basis elements for k
    ? 3 is an open question.
  • Dk (fi)0?i?k ? (I0,1?IR)k1 Cons
    (fi)0?i?k

34
Picards Theorem
35
Picards Solution Reformulated
  • ApF (f,g) ? (f , ?t. F(t,f(t)))

36
A domain-theoretic Picards theorem
  • We now have the basic framework to obtain
    Picards theorem with domain theory.
  • However, we have to make sure that derivative
    updating preserves consistency.
  • Say (f , g) is strongly consistent, (f , g)
    ?S-Cons, if
  • ? h ? g. (f , h) ? Cons
  • On basis elements, strong consistency is
    decidable.

37
A domain-theoretic Picards theorem
  • Consider any initial value f ? 0,1 ? IR with
  • (f, F (. , f ) ) ?
    S-Cons
  • Then the continuous map P Up ? ApF has a
    least fixed point above (f, F (. , f ))
  • Theorem. If F Ih for a map h 0,1 ? R ? R
    which satisfies the Lipschitz property of
    Picards theorem, then the domain-theoretic
    solution coincides with the classical solution.

38
Example
F is approximated by a sequence of step
functions, F1, F2, F ?i Fi
.
t
The initial condition is approximated by
rectangles ai?bi (1/2,9/8) ?i ai?bi,
F
t
39
Solution
At each stage we find Li and Gi
.
40
Solution
At each stage we find Li and Gi
.
41
Solution
At each stage we find Li and Gi
.
Li and Gi tend to the exact solutionf t ?
t2/2 1
42
Further Work
  • Solving Differential Equations with Domains
  • Differential Calculus with Several Variables
  • Implicit and Inverse Function Theorems
  • Reconstruct Geometry and Smooth Mathematics with
    Domain Theory
  • Continuous processes, robotics,

43
THE ENDhttp//www.doc.ic.ac.uk/ae
44
(No Transcript)
45
Higher Interval Derivative
46
Higher Interval Derivative
  • For f I0,1 ? IR we define I0,1 ?
    IR by
  • Then ?f ? ?2(a,b) a?b
  • ? (I0,1 ? IR) ? (P(I0,1 ? IR), ? )
  • ? a?b ? (a,b)

(2)
(2)
2
47
Domains of C 2and C k functions
  • Theorem. ????? restricts to give a topological
    embedding D2c ? D2

48
Consistency Test for (f,g)
  • Also define L(x) supy?O?Dom(f)(f (y)
    d(x,y)) and G(x)
    infy?O?Dom(f)(f (y) d(x,y))

49
Consistency Test
  • Theorem. (f, g) ? Con iff ?x ? O. L(x) ? G(x).
    For (f, g) (?1?i?n ai?bi, ?1?j?m cj?dj)
  • the rational endpoints of ai and cj induce a
    partition X x0 lt x1 lt x2 lt lt xk of O.
  • Proposition. For arbitrary x ? O, there isp,
    where 0 ? p ? k, with L(x)
    f (xp) d(x,xp).
  • Similarly for G(x).
Write a Comment
User Comments (0)
About PowerShow.com