NSF Key Project and Recent Progress of Lattice QCD in China - PowerPoint PPT Presentation

1 / 40
About This Presentation
Title:

NSF Key Project and Recent Progress of Lattice QCD in China

Description:

Thron, Dong, Liu, Ying,Phys.Rev. D57 (1998) 1642. Ying, Chin. Phys. Lett. 15 ... Yi-Zhong Fang (Zhongshan U., Guangzou) Shuo-Hong Guo (Zhongshan U., Guangzou) ... – PowerPoint PPT presentation

Number of Views:41
Avg rating:3.0/5.0
Slides: 41
Provided by: xiangq
Category:

less

Transcript and Presenter's Notes

Title: NSF Key Project and Recent Progress of Lattice QCD in China


1
NSF Key Project and Recent Progress of Lattice
QCD in China
  • Xiang-Qian Luo

Zhongshan (Sun Yat-Sen) University, Guangzhou,
China stslxq_at_zsu.edu.cn http//
qomolangma.zsu.edu.cn
2
  • Chinese physicists have been involved in the
    study of lattice gauge theory since early 80's.
  • Institute of High Energy Physics, Beijing
  • Institute of Theoretical Physics, Beijing
  • Peking Uniniversity, Beijing
  • Nankai University, Tianjin
  • Sichuan University, Chengdu
  • Zhejiang University, Huangzhou
  • Zhongshan University, Guangzhou

3
  • Beijing
  • Tianjin
  • Chengdu
  • Huangzhou
  • Guangzhou

4
  • Most investigations in 80s were analytical, due
    to limited computational facilities.
  • For review, Guo and Luo, hep-lat/9706017.
  • Thanks to (1) rapid development of high
    performance supercomputers in China in late 90's,
  • (2) success of the Symanzik improvement program,
  • (3) support from NSF (National Science
    Foundation),
  • more and more Chinese physicists do numerical
    simulations.

5
  • Top 500 Supercomputers in the world, 2002

6
  • Top 50 supercomputers in China, 2002

7
(No Transcript)
8
(No Transcript)
9
(No Transcript)
10
Dawning 3000
11
  • Dawning 3000
  • 128 nodes
  • Rmax 279.60Gflops
  • Rpeak 403.2Gflops
  • Memory 168GB
  • Disk 3.63TB?
  • CPU Power3-II,
  • Network 2D Mesh or Myrinet
  • Operating system IBM AIX

12
  • DeepComp 1800

13
  • Legend GroupDeepComp 1800 - P4 Xeon 2 GHz -
    Myrinet/ 512CPU (NODES)
  • Rmax1.046 TflopsRpeak 2.048 Tflops
  • Location Beijing, China
  • Number 43 of top 500 supercomputers 2002
  • The 3rd fastest in Asia?
  • http//www.top500.org/lists/2002/11/

14
  • Zhongshan U. self-made PC cluster, 2000

15
NSFC National Science Foundation Committee
established in 1986 an organization directly
affiliated to the State Council for the
management of the National Natural Science Fund.
General project 100K yuan for 3 years. (1
Yuan1/8USD) NSF project for distinguished young
scientists 80M yuan for 4 years. Key NSF
project 100M yuan for 4 years
16
  • Approved NSF Funds in China

17
  • These years, the Chinese lattice physicists
    received a lot of supports from NSFC and other
    sources
  • T.L. Chen, Nankai U., General project, 100K yuan
  • S.H. Guo, Zhongshan U., Guangzhou, General
    project, 100K yuan
  • C. Liu, Peking U., Beijing, General project,
    100K yuan
  • J.M. Liu, Zhongshan U., General project, 100K
    yuan
  • X.Q. Luo, Zhongshan U., General project, 100K
    yuan
  • J.M. Wu, IHEP, Beijing, General project, 100K
    yuan
  • H.P. Ying, Zhejiang U., Huangzhou, General
    project, 100K yuan
  • X.Q. Luo, Zhongshan U., NSF project for
    distinguished young scientists 80M yuan
    (1999-2002)
  • X.Q. Luo, Q.Z. Chen, Y. Chen, Y.Z. Fang, S.H.
    Guo, C.Q. Huang, C. Liu, Z.H. Mei, H.P. Ying, Key
    NSF project 120M yuan (2003-2006)

18
  • Structure of Matter
  • Quantum ChromoDynamics(QCD) theory of strong
    interactions between quarks, mediated by gluons

19
? Lattice Gauge Theory (Wilson, 1974) most
reliable non-perturbative tool for strong
interactions
? Basic Ideas Continuum space-time ?
Discretized grid Derivative ? Finite difference
  • a) quark field ?(x)
  • b) gauge field U(x,k)

20
  • Advantage physical quantities can now be
    calculated by Monte Carlo simulation on a
    computer
  • Disadvantage O(a) errors are large at large
    coupling g.
  • To reduce the error and keep La gt diameter of the
    hadron, large volume (Lgtgt1) is needed
  • It costs a lot of computer time, and high
    performance parallel computer is necessary
  • L the number of lattice point in one direction

21
  • Improved Lattice QCD
  • The most efficient way to reduce the O(a) and
    finite volume errors
  • Improved scalar action (Symanzik, 1983)
  • Quark action Hamber and Wu, Phys. Lett. B133
    (1983) 351.

  • (Sheikholeslami and Wohlert, 1985)
  • Improved gluon action (Luscher, Weisz, 1984)
  • Tadpole improvement (Lepage, 1996)
  • Improved quark Hamiltonian
  • Luo, Chen, Xu, Jiang, , Phys. Rev. D50 (1994)
    501.
  • Jiang, Luo, Mei, Jirari, Kroger, Wu, Phys. Rev.
    D59 (1999) 014501.
  • Improved gluon Hamiltonian
  • Luo, Guo, Kroger, Schutte, Phys. Rev. D59 (1999)
    034503.

22
  • Algorithms
  • To do numerical simulations with dynamical Wilson
    fermions
  • Thron, Dong, Liu, Ying,Phys.Rev. D57 (1998) 1642
  • Ying, Chin. Phys. Lett. 15 (1998) 401.
  • To do numerical simulations with Kogut-Susskind
    fermions in the chiral limit
  • Luo, Mod. Phys. Lett. A16 (2001) 1615.
  • Which extends the following algorithm to QCD
  • Azcoiti, Di Carlo, Grillo, Phys. Rev. Lett. 65
    (1990) 2239.
  • Azcoiti, Laliena, Luo, Piedrafita, Di Carlo,
    Galante, Grillo, Fernandez, Vladikas, Phys. Rev.
    D48 (1993) 402.

23
  • To do numerical simulations with clover fermions
  • Luo, Comput. Phys. Commun. 94 (1996) 119-127.
  • Jansen and Liu, Comput. Phys. Commun. 99 (1997)
    221.
  • To do numerical simulations with Ginsparg-Wilson
    fermions
  • Liu, Nucl. Phys. B554 (1999) 313.

24
  • Problems of standard Langrangian Monte Carlo
    simulations
  • Extremely difficult to study excited states,
  • Broken done in QCD at finite density.
  • Hamiltonian formulation of LGT doest encounter
    above problem.
  • Monte Carlo Hamiltonian to construct effective
    Hamiltonian from standard Monte Carlo
    simulations.
  • Tested in quantum mechanics
  • Jirari, Kroger, Luo, Moriarty, Phys. Lett. A258
    (1999) 6.
  • Luo, Jiang, Huang, Jirari, Kroger, Moriarty,
    Physica A281 (2000) 201.
  • Tested in the scalar model
  • Huang, Kroger, Luo, Moriarty, Phys. Lett. A299
    (2002) 483.

25
(No Transcript)
26
                                             
Fig. 1. Energy spectrum in a low energy
window.
  • Fig. 2. Free energy F. Comparison of results from
    Monte Carlo Hamiltonian (filled circles) with
    standard Lagrangian lattice calculations (open
    circles).

27
(No Transcript)
28
  • Scattering of hadrons using tadpole improved
    clover Wilson action on coarse anisotropic
    lattices
  • Liu, Zhang, Chen, Ma,Nucl. Phys. B624 (2002)
    360.
  • C. Liu 
  •   Pion scattering length with small anisotropic
    lattices, this workshop

29
  • Hybrid meson
  • QCD predict the existence of some new particles
  • Glueball bound state of gluons
  • Hybrid meson bound state of quark, anti-quark
    and gluons
  • Glueball

30
  • Glueball Spectrum
  • From Hamiltonian lattice QCD
  • Luo, Q. Chen, Mod.Phys.Lett. A11 (1996) 2435.
  • Nucl. Phys. B(Proc.Suppl.)53 (1997) 243.
  • From Improved glunon action
  • C. Liu, Chin. Phys. Lett. 18 (2001) 187.
  • D. Liu, Wu, Y. Chen, High Energy Phys. Nucl.
    Phys. 26 (2002) 222.
  • Mod.Phys.Lett. A17 (2002) 1419.
  • Mei, Luo, 2003, in preparation.
  • Quantum number JPC

31
  • Construct New Glueball Operators using their
    relation between lattice and continuum
  • D. Liu, Wu, Y. Chen, High Energy Phys. Nucl.
    Phys. 26 (2002) 222.
  • First Calculation for the Mass of the 4
    Glueball
  • D. Liu, Wu, Mod.Phys.Lett. A17 (2002) 1419.

32
  • Mei, Luo, 2002 Glueball masses from Improved
    gluon action (compared with Morningstar, Peardon,
    1997, 1999)
  • MG(0)1733MeV
  • MG(2)2408MeV
  • MG(1-) 2951MeV
  • Glueballs can also mix with mesons, and decay (in
    progress)

33
  • Hybrid meson masses from QCD with improved gluon
    and quark actions on the anisotropic lattice
  • Mei and Luo, hep-lat/0206012

34
  • At sufficiently high temperature and density,
    quarks are no longer confined
  • New state of matter Quark-Gluon Plasma

35
(No Transcript)
36
  • Neutron Star
  • RHIC (Relativistic Heavy Ion Collider)
  • LHC (Large Hadron Collider)
  • Lattice QCD at High Temperature can well be
    investigated by the standard Monte Carlo approach
  • At finite density (chemical potential), standard
    action approach (Hasenfratz, Kasch, 1983) fails
    because S is complex, one can not use e-S to
    generate configurations

37
  • Alternative (Hamiltonian) QCD at finite chemical
    potential was solved in the strong coupling
    regime
  • Gregory, Guo, Kroger, Luo, Phys. Rev. D62 (2000)
    054508.
  • Luo, Gregory, Guo, Kroger, hep-ph/0011120.
  • Fang, Luo, hep-lat/0210031.
  • There is a first order chiral phase transition at
    ?c
  • Reasonable results for the physical quantities
    are obtained,

38
  • Nature of the chiral phase transition?
  • Rapp, Schafer, Shuryak, Velkovsky, 1998
  • Alford, Rajagopal, Wilczek, 1998
  • Diquark condensation in the high density phase?
  • Instantons and chaos play an important role?
  • There is no first principle study in SU(3).
  • The definition of quantum instantons and quantum
    chaos are umbiguous.
  • New Quantum Instantons and Quantum Chaos
  • Jirari, Kroger, Luo, Moriarty, Rubin, Phys.
    Rev. Lett. 86 (2001) 187.

39
Key Project of National Science Foundation"Large
Scale Simulations of Lattice Gauge Theory, 120M
(2003-2006)
  • Xiang-Qian Luo (Director, Zhongshan U., Guangzou)
  • Qi-Zhou Chen (Zhongshan U., Guangzhou)Ying Chen
    (Institute of High Energy Phys.,
    Beijing)Yi-Zhong Fang (Zhongshan U.,
    Guangzou)Shuo-Hong Guo (Zhongshan U.,
    Guangzou)Chun-Qing Huang (Zhongshan U. and
    Foshan U.)Chuan Liu (Peking U., Beijing)Da-Qing
    Liu (Institute of Theoretical Phys.,
    Beijing)Zhong-Hao Mei (Zhongshan U.,
    Guangzou)He-Ping Ying (Zhejiang U., Huangzhou)

40
  • We plan to do large scale simulations of lattice
    QCD, using the parallel supercomputing facilities
    in China. We will develop new numerical methods
    and study the following hot topics
  • new hadrons such as glueballs and hybrid mesons,
  • scattering of hadrons,
  • topology of QCD vacuum,
  • transition from the quark confinement phase to
    quark-gluon plasma phase,
  • quantum instantons and quantum chaos.
Write a Comment
User Comments (0)
About PowerShow.com