A Simplified Proof for Roberts Theorem - PowerPoint PPT Presentation

1 / 29
About This Presentation
Title:

A Simplified Proof for Roberts Theorem

Description:

(Also all affine maximizers: f(v)= argmaxa A {Si wi vi (a) ... satisfies cyclic-monotonicity and S-MON, then f must be affine maximizer (with wj 0, j = 1..n) ... – PowerPoint PPT presentation

Number of Views:35
Avg rating:3.0/5.0
Slides: 30
Provided by: ahu47
Category:

less

Transcript and Presenter's Notes

Title: A Simplified Proof for Roberts Theorem


1
A Simplified Proof for Roberts Theorem
Ron Lavi, Ahuva Mualem, and Noam Nisan
2
Motivation
  • Mechanisms elections, auctions (1st / 2nd
    price, double, combinatorial, ), resource
    allocations
  • social goal vs. individuals strategic
    behavior.
  • Main Problem Which social goals can be
    achieved ?
  • For some settings, Roberts showed that only
    limited class of goals can be implemented (even
    if the society has unlimited amount of money).

3
Social Choice Function (SCF(
  • f V1 Vn ? A
  • A is the finite set of possible alternatives.
  • Each player has a valuation vi A ? R.
  • f chooses an alternative from A for every v1 ,,
    vn.
  • For CAs A all feasible partitions of the
    given items
  • For CAs Vi vi that satisfy 1, 2, 3(1)
    no externalities (2) free disposal (3)
    normalization
  • For CAs a partition S1..Sn that maximizes ?i
    vi(Si).
  • Alternatively for CAs S1..Sn that maximizes
    mini vi (Si ).

4
Social Choice Function (SCF(
  • f V1 Vn ? A
  • A is the finite set of possible alternatives.
  • Each player has a valuation vi A ? R.
  • f chooses an alternative from A for every v1 ,,
    vn.
  • 1 item Auction A player i wins, i1..n,
    Vi R, f (v) argmax(vi)
  • Combinatorial Auction a partition of items
    S1..Sn that maximizes
  • ?i vi(Si).
  • Nisan, Ronens problem a partition of tasks
    S1..Sn that minimizes maxi ci (Si ).

5
Truthful Implementation of SCFs
  • Dfn A Mechanism m(f, p) is a pair of a SCF f
    and a payment function pi for every player.
  • Dfn A Mechanism is truthful (in dominant
    strategies) if rational players tell the truth
    ? vi , v-i , wi vi ( f(vi , v-i)) pi(vi ,
    v-i) vi ( f(wi , v-i)) pi(wi , v-i).
  • - If the mechanism m(f, p) is truthful we also
    say that m implements f.
  • - 1st vs. 2nd Price Auction.
  • - Not all SCFs can be implemented Majority
    vs. Minority between 2 alternatives.

6
What SCFs are implementable?
  • Positive Result VCG ? A and ? V
    f(v)argmaxa? A Si vi (a).
  • (Also all affine maximizers f(v) argmaxa? A
    Si wi vi (a) ?a .)

7
What SCFs are implementable?
  • Positive Result VCG ? A and V f(v)argmaxa?
    A Si vi (a).
  • (Also all affine maximizers f(v) argmaxa? A
    Si wi vi (a) ?a .)
  • Negative Result Roberts 79 If A 3 and V
    is unrestricted (RnA), then only affine
    maximizers are implementable.

8
What SCFs are implementable?
  • Positive Result VCG ? A and V f(v)argmaxa?
    A Si vi (a).
  • (Also all affine maximizers f(v) argmaxa? A
    Si wi vi (a) ?a .)
  • Negative Result Roberts 79 If A 3 and V
    is unrestricted (RnA), then only affine
    maximizers are implementable.
  • Single Parameter Domains (essentially Ai 2 )
    Many other SCFs are implementable.
  • CAs with single minded bidders Lehmann,
    OCallaghan, Shoham, Scheduling Related Parallel
    Machines Archer, Tardos, Profit Maximization
    of Digital goods Fiat, Goldberg, Hartline,
    Karlin

9
What SCFs are implementable?
  • Positive Result VCG ? A and V f(v)argmaxa?
    A Si vi (a).
  • (Also all affine maximizers f(v) argmaxa? A
    Si wi vi (a) ?a .)
  • Negative Result Roberts 79 If A 3 and V
    is unrestricted (RnA), then only affine
    maximizers are implementable.
  • Single Parameter Domains Many other SCFs are
    implementable.
  • e.g. LOS99
  • OPEN

severely restricted domains with non-affine
maximizers
unrestricted domains with only affine
maximizers
Multiparameter Domains
CAs ?
10
Comparison with the non-quasi-linear case
Arrow 63 Gibbard-Satterthwaite73-5
Single-Peaked Domains
Saturated
Domains must be dictatorial
11
  • Monotonicity

12
In 1 item Auctions Truthfulness ? Monotonicity
This can be generalized to single parameter
domains LOS99. Monotonicity refers to the
social choice function alone (no need to consider
the payment function). - .
13
Truthfulness ? Cyclic -Monotonicity
  • Thm1 RochetRoz A SCF f V ? A is
    truthfully implementable iff f is
    Cyclic-Monotone.
  • Thm2 If f is truthfully implementable then f
    satisfies W-MON.

14
Truthfulness ? Cyclic -Monotonicity
  • Thm1 RochetRoz A social choice function f
    V ? A is truthfully implementable iff f is
    Cyclic-Monotone.
  • Thm2 If f is truthfully implementable then f
    satisfies W-MON.
  • Dfn1 f satisfies W-MON if for any vi , ui
    and v-i
  • f (vi , v-i) a and f (ui , v-i) b
  • implies ui (b) - ui (a) gt vi (b) - vi (a).

vi (a) vi (b)
ui (a)
ui (b)
15
  • Example single player,
  • 2 alternatives a, and b,
  • 2 possible valuations v, and u.
  • Majority satisfies W-MON.
  • Minority doesnt.

16
Truthfulness ? Cyclic -Monotonicity
  • Thm1 RochetRoz A social choice function f
    V ? A is truthfully implementable iff f is
    Cyclic-Monotone.
  • Thm2 If f is truthfully implementable then f
    satisfies W-MON.
  • Dfn1 f is W-MON if for any vi , ui and v-i
  • f (vi , v-i) a and f (ui , v-i) b
  • implies vi (a) - vi (b) ui (b) - ui (a) gt
    0.
  • Dfn2 f is Cyclic-Monotone if for any k, vi 1,
    vi 2, , vi k , v-i
  • ?j1k vi j (f(vi j, v-i )) - vi j (f(vi j1
    , v-i )) gt 0.
  • Remark If A2, then Dfn1Dfn2.

17
  • Example
  • single player
  • A a, b, c.
  • V1 v, u, w.
  • f(v)a, f(u)b, f(w)c.
  • f satisfies W-MON, but not Cyclic-Monotonicity
  • v(a) v(b) u(b) u(c) w(c) w(a) lt 0.

18
Monotonicity what is really needed for our proof
  • Def dabi (v-i ) inf vi (a) - vi (b) vi
    ? Vi s.t. f (vi , v-i ) a .
  • In particular, if f(v) a, then
  • vi (a) - vi (b) dabi (v-i ) for every b ?
    a.

19
Monotonicity what is really needed for our proof
  • Def dabi (v-i ) inf vi (a) - vi (b)
    vi ? Vi s.t. f (vi , v-i ) a .
  • W-MON essentially ? dabi (v-i )
    dbai (v-i ) 0
  • Cyclic-Monotonicity essentially ?
  • dabi (v-i ) dbci (v-i )dcai (v-i ) 0

20
  • In Unrestricted Domains the Monotonicity
    condition can be strengthened w.l.o.g

21
  • Dfn f satisfies S-MON if for any vi , ui and
    v-i
  • f (vi , v-i) a and f (ui , v-i) b
  • implies ui (b) - ui (a) gt vi (b) - vi (a).
  • Intuition S-MON stability
  • Prop If V is unrestricted then for every f
    there exists f
  • if f satisfies W-MON ? f satisfies
    S-MON.
  • if f is affine maximizer ? f is affine
    maximizer.

22
  • Weaker version of Roberts Thm
  • Let A 3, and V RnA. If f is
    decisive and
  • truthful implementable,
  • then f must be affine maximizer (with wj gt 0,
    j 1..n) .
  • Equivalent Thm
  • Let A 3, and V RnA. If f is
    decisive and
  • satisfies cyclic-monotonicity and S-MON,
  • then f must be affine maximizer (with wj gt 0,
    j 1..n) .

23
  • (For every a, b, c ? A, and v-i )
  • Claim1 -? lt dabi (v-i ) lt ? .
  • Claim2 dabi (v-i ) dbai (v-i
    ) 0 .
  • Claim3 dabi (v-i ) dbci (v-i ) dcai (v-i )
    0 .
  • Claim4 dabi (v-i ) dab i (v-i - L 1j,c ),
    for every L ? R.
  • Claim5 dabi (v-i ) dab i (v-i (a) - v-i (b))
    .
  • Conclusion dabi (r ) dbai (-r ) 0 ,
  • dabi (r ) dbci (t ) dcai (-r - t ) 0
    , for every r, t ? Rn-1
  • dabi (0 ) dbai (0 ) 0 .
  • dabi (0 ) dbci (0 ) dcai (0 ) 0 .

24
  • (For every a, b, c ? A, r, t, s? Rn-1 )
  • Claim6 dabi (rt ) - dabi (r ) dcbi (st )
    - dcbi (s ) .
  • Claim7 dabi (r ) - Sj? i wj rj dabi (0
    ) .
  • (the same wj gt 0 for every a and b).
  • Finally Fix some c. If f (v) a, then for
    every b we have
  • vi (a) - vi (b) gt dabi (v-i (a) - v-i (b))
  • - Sj? i wj (vj (a) - vj (b)) dabi (0 )
  • - Sj? i wj (vj (a) - vj (b)) - dbci (0 ) -
    dcai (0 )
  • - Sj? i wj (vj (a) - vj (b)) - dbci (0 )
    daci (0 ).
  • And so f(v) argmaxa ? A vj (a) Sj? i
    wj vj (a) - daci (0 )

25
  • Thank you!

26
W-MON ? Truthfulness?
  • Thm Bikhchandani, Chatterji, Lavi, M, Nisan,
    Sen, Muller, Vohra
  • W-Mon ? Truthfulness for Combinatorial Auctions,
  • Multi Unit Auctions with decreasing marginal
    valuations, and several other interesting
    domains.
  • Thm Saks, Yu
  • If V is convex, then W-Mon ? Truthfulness.

27
Impossiblities for Restricted Domains
  • Thm Lavi, M, Nisan
  • Every player-decisive, non-degenerate
    implementable SCF for Combinatorial Auctions that
    satisfies S-MON must be an almost affine
    maximizer.

28
Monotonicity one more thing
  • Many other implementation concepts imply similar
    monotonicity conditions. E.g., truthfulness in
    expectation Lavi, Swamy, M, Schapira.

29
  • Thank you!
  • !!!
Write a Comment
User Comments (0)
About PowerShow.com