Lunar Laser Ranging A Testbed for General Relativity - PowerPoint PPT Presentation

1 / 37
About This Presentation
Title:

Lunar Laser Ranging A Testbed for General Relativity

Description:

telescope (o 70 cm), Laser power. altitude, location, atmosphere - weather conditions ... Love number k2 = 0.023 0.003. Dissipation from - fluid core (Rc 354 km) ... – PowerPoint PPT presentation

Number of Views:78
Avg rating:3.0/5.0
Slides: 38
Provided by: jml5
Category:

less

Transcript and Presenter's Notes

Title: Lunar Laser Ranging A Testbed for General Relativity


1
Lunar Laser Ranging A Testbed for General
Relativity
DPG Conference, Freiburg, March 4, 2008
  • Jürgen Müller
  • Institut für Erdmessung, Leibniz Universität
    Hannover, Germany

2
Acknowledgement
Work has been supported by DFG Research Unit
FOR584 Earth Rotation and Global Dynamic
Processes (computations by Liliane
Biskupek) and the Centre of Excellence
QUEST (Quantum Engineering and Space-Time
Research)
3
Contents
  • Introduction
  • - Motivation
  • Lunar Laser Ranging
  • - Data (distribution and accuracy)
  • - Analysis
  • Relativity Tests
  • Conclusions
  • - Future capabilities

4
Lunar Laser Ranging (LLR)
  • 38 years of observations
  • Modelling so far at cm-level
  • Long-term stability (e.g., orbit)
  • ? Earth-Moon dynamics
  • ? Relativity parameters

?
?
5
Retro-Reflectors on the Moon
Apollo 11 July 1969
Apollo 14 Jan./Feb.71
Apollo 15 Jul./Aug.71
X
Luna 17 Nov.70...
Luna 21 Jan.73...
6
Lunar Laser Ranging - Measurements
  • Observation
  • of 1019 photons per pulse from the transmitter,
  • only 1 is received
  • illuminated surface on the Moon about 25 km2
  • (reflector surface 1 m2)
  • telescope (o 70 cm), Laser power
  • altitude, location, atmosphere
  • - weather conditions
  • - accuracy 1.5 cm t
  • Identification of lunar returns Dr
  • - Filtering
  • spatial N
  • temporal
  • spectral Dr

7
Observation Application of Pulse Pattern
8
Observation Application of Pulse Pattern (2)
9
LLR Observations per Year
Number of observations annually averaged 16 000
normal points in total, between1970 and 2007
10
Distribution of Observations per Synodic Month
Observations per 100 bin
Synodic Angle (degree)
11
Distribution of Observations per Synodic Month
Moon
Full Moon
New Moon
Sun
No data
No data
Earth
  • - large data gaps near Full and New Moon

12
Distribution of Observations per Sidereal Month
Observations per 100 bin
Sidereal Angle (degree)
13
Weighted Annual Residuals
weighted residuals (observed - computed
Earth-Moon distance), annually averaged
  • model?
  • observations?

?
14
Use of New APOLLO Data
  • New site APOLLO in New Mexico (USA),
  • mm accuracy
  • 3,5 m telescope
  • Improved receiver optics
  • Local control measurements
  • Software changes ? 7 stations
  • 70 normal points (04.06 12.06), more in 2007
  • Accuracy of observations down-weighted

15
Weighted Annual Residuals (Past Years)
  • only McDonald data

16
LLR Observation Equation
  • Relativity in LLR
  • - transformation between reference
  • systems (Moon, Earth, inertial)
  • - transformation between time systems
  • orbital motion of the solar system bodies
  • rotation of Earth and Moon
  • - gravitational time delay (Shapiro)
  • - effect meter level

17
LLR Results (Theory)
  • Analysis
  • - model based upon Einstein's Theory
  • - least-squares adjustment
  • - determination of the parameters of the
    Earth-Moon system (about 170 unknowns, without
    EOPs)
  • Results of major interest
  • - station coordinates and velocities (ITRF2000) -
    GGOS
  • - Earth rotation, s 0.5 mas (IERS)
  • - relativity parameters
  • (grav. constant, equivalence principle, metric
    ...)
  • - ... lunar interior ...

GGOS Global Geodetic Observing System
18
Relativistic Parameters
  • Strategy Newtonian effects modelled accurately
    enough or determined simultaneously
  • Examples
  • metric parameters (e.g. space time
    non-linearity, preferred frames)
  • test of the equivalence principle (Nordtvedt
    effect, dark matter)
  • time-variable Gravitational Constant
  • 1/r2-law (Yukawa terms)

19
Example Gravitational Constant G
  • Investigation of secular and quadratic variations

Results
20
Sensitivity Study for
  • Separation of free and forced terms ? two orbit
    solutions
  • perturbed,
  • un-perturbed
  • ? difference
  • Sensitivity analysis via

21
Corresponding Spectrum
  • als Spektrum

22
Example Nordtvedt Effect
  • Test of the strong equivalence principle
  • Shift of the lunar orbit towards the Sun?
  • No! -- Realistic error below 1 cm

23
Sensitivity of Relativistic Parameters (1)
Yukawa a
Equivalence principle mI/mG
Gravitational constant
24
Relativistic Parameters Power Spectra (1)
Equivalence principle mG/mI
anomal
412 d anom-syn
2syn
syn
31.8d 2syn-anomal
206 d 2anom-2syn
10 d
132 d 2anom-2synann
25
Relativistic Parameters Power Spectra (2)
Yukawa a
anomal
sid-2ann
2syn
10 d
204 d
131 d
409 d
1093 d
26
Sensitivity of Relativistic Parameters (2)
Preferred frames a1
Preferred frames a2
27
Relativistic Parameters Power Spectra (3)
Preferred-frame effect a1 (coupled with solar
system velocity)
sid, syn
sid-2ann
anom-ann
anomann
annual
2syn
204 d, 2ann
34 d
131 d
2nodal
28
Relativistic Parameters Power Spectra (4)
Preferred-frame effect a2 (coupled with solar
system velocity)
2sid-anom
sid-2ann
2sid
2syn
10 d
34 d
nodal
annual
204 d
1666 d
2ann
131 d
29
Relativistic Parameters Power Spectra (5)
Gravito-magnetic effect (PPN parameter a1) in the
solar system
a1(-2.8 ? 3) 10-3
Soffel et al. 2008
30
Results - Relativity
31
Results Relativity (2)
32
Further Applications
  • Reference frames
  • dynamic realisation of the ICRS by the lunar
    orbit, s lt 0.01 (stable, highly accurate
    orbit, no non-conservative forces from
    atmosphere)
  • Earth orientation
  • Earth rotation (e.g. UT0, VOL)
  • long-term nutation coefficients, precession
  • Relativity
  • test of further theories, Lense-Thirring effect
  • Combination with other techniques
  • combined EOP series and reference frames (GGOS)
  • Moon as long-term stable clock

33
Lunar Interior
  • Lunar rotation
  • libration angles, s 0.001
  • numerically integrated
  • Lunar tides
  • - Love number k2 0.023 0.003
  • Dissipation from
  • - fluid core (Rc lt 354 km)
  • - solid mantle, Q 33 4

Courtesy Turyshev and Williams, JPL
34
Future Lunar Missions
Lunar Renaissance Orbiter (LRO)
  • Deployment of transponders (6 yr lifetime) and
    new retro-reflectors on the Moon or in lunar
    orbit
  • - more observatories
  • - tie to VLBI (inertial reference frames)
  • New high resolution photographs of reflector
    arrays
  • - better lunar geodetic network
  • - lunar maps

35
New Ranging Measurements Why?
  • New data needed to constrain lunar interior
    structure
  • improve measurements of forced librations
  • measure tidal distortion (amplitude and phase)
  • lunar oscillations as response to large quakes or
    impacts?
  • Improve on limits of relativistic effects
  • time variability of the gravitational constant
  • test of strong equivalence principle (Nordtvedt
    effect)
  • Improve the tie between the lunar network and the
    radio reference frame (VLBI)
  • Above goals require more data, more accurate
    data, and unbiased measurements!

36
Conclusions
  • LLR contributes to better understanding of
  • - Reference frames (ITRF, dynamic ICRF)
  • - Earth orientation (IERS)
  • - Earth-Moon system
  • - Relativity
  • - Lunar interior
  • -
  • and supports Global Geodetic Observing System
  • In future new lunar ranging experiment
  • (and combination with other techniques)

37
Laser on the Moon?
Selenocentric frame
  • Signal has higher strength than any
    mirror-reflected signal by orders of magnitude
  • energy loss r4 vs. r2
  • higher measurement (mm) accuracy
  • observations at Full Moon (Laser will outshine
    Moonlight)
  • and at New Moon possible (pointing requ. not
    as severe)
  • More measurements by orders of magnitude
  • measurements from many SLR stations with light
    equipment possible
  • coverage for long-period lunar variations
  • identification of short-period global
    oscillations of the Moon

Dynamic inertial frame
Terrestrial frame
Write a Comment
User Comments (0)
About PowerShow.com