Accelerators - PowerPoint PPT Presentation

About This Presentation
Title:

Accelerators

Description:

Accelerators Mark Mandelkern For producing beams of energetic particles Protons, antiprotons and light ions heavy ions electrons and positrons (secondary) neutral ... – PowerPoint PPT presentation

Number of Views:75
Avg rating:3.0/5.0
Slides: 31
Provided by: outreachP5
Category:

less

Transcript and Presenter's Notes

Title: Accelerators


1
Accelerators
  • Mark Mandelkern

2
For producing beams of energetic particles
  • Protons, antiprotons and light ions
  • heavy ions
  • electrons and positrons
  • (secondary) neutral beams (photons, neutrons,
    neutrinos)

3
Some accelerator applications
  • particle and nuclear physics
  • synchrotron radiation
  • materials science, biology
  • medical radiation therapy
  • isotope production
  • plasma heating
  • high energy X-ray production
  • non-destructive testing, food sterilization

4
Accelerators in particle physics
  • probe small-scale structure
  • l h/p197 10-13 cm /p(MeV/c)
  • electrons, positrons
  • Pointlike (also neutrinos), no strong
    interactions
  • costly to accelerate (synchrotron radiation)
  • protons and antiprotons
  • complicated structures make interpretation
    difficult
  • easier to accelerate to ultra-high energies

5
Accelerator types
  • electrostatic
  • battery, lightning, van de Graff, Pellatron to
    about 30 MeV for nuclear physics and isotope
    production
  • cascade
  • Cockcroft-Walton to several MeV cheap for
    X-ray sources and injectors
  • Linear
  • RFQ
  • drift-tube(Wideroe, Alvarez)preaccelerators,
    LAMPF
  • Waveguideelectrons only(SLAC, NLC)

6
Pelletron
7
Van de Graff
8
Cockcroft-Walton principle
9
ISIS Cockcroft-Walton
10
Wideroe Linac
11
Alvarez Linac
12
Radiofrequency Quadrupole RFQ
13
SLAC Linac
14
SLAC Waveguide
15
Phase Stability
16
Circular Accelerators
  • betatron
  • electrons only, cheap, portable, to 500 MeV
  • cyclotron
  • Protons to 500 MeV (TRIUMF, PSI)
  • Synchrotron
  • 100 GeV electrons (LEP)
  • 1 TeV protons and antiprotons (FNAL)
  • 7 TeV protons (LHC)

17
Cyclotron animation
18
First cyclotron
19
TRIUMF
20
Strong focusing principle
21
Strong focusing animation
22
HEP Accelerator Systems
  • FNAL Tevatron(1 TeV p)
  • CW(750 keV)LinacBooster(8 GeV)Main
    Injector(120 GeV) Tevatron Ring
  • CERN SPS/LEP(400 GeV p/100 GeV e-)
  • RFQ (750 keV)Linac (50 MeV)PS(28 GeV)SPSLEP

23
FNAL Tevatron Tunnel
24
Synchrotron radiation
  • W(e2/3e0)(g4b3/R) loss per turn
  • Ec(hc/2p)(3g3/2R) peak energy
  • gE/mc2
  • LEP 100 GeV/beam R4.9km W3 GeV Ec 90
    keV(hard X-ray) 288 SC RF cavities
  • Tevatron E1 TeV R1.1km W 10 eV Ec0.4 eV
  • LHC E7 TeV R4.9 kmW5 keV, Ec27 eV

25
Colliders
  • Circular
  • e- e below 10 GeV (BEPS/PEP-2/KEKB)
  • 1 TeV p/1 TeV pbar (Tevatron-FNAL),
  • 27.5 GeV e-/920 GeV p (HERA-DESY)
  • 105 GeV e-/105 GeV e (LEP-CERN)
  • 7 TeV p/7TeV p (LHC-CERN)
  • Linear
  • 50 GeV e-/50 GeV e (SLC-SLAC)
  • 1 TeV e-/1 TeV e (NLC-?)

26
Why Colliders?
  • Fixed target (pp)
  • Ecm2mb2mt22Ebmt
  • Eb1 TeV mbmt0.938 GeV Ecm43.3 GeV
  • Symmetrical Collider
  • EcmEbEt
  • EbEt 1 TeV Ecm2 TeV

27
How Colliders?
  • Event Rate Ls
  • Lf n1n2/(4psxsy)
  • n1 n2 particles per bunch
  • sx,sy rms horizontal (vertical) beam profile
  • Thus intense bunched beams with tiny beam spots
    at the interaction points

28
LEP
29
LHC
30
SLC/NLC
Write a Comment
User Comments (0)
About PowerShow.com