Galaxy formation: radio through submm view - PowerPoint PPT Presentation

About This Presentation
Title:

Galaxy formation: radio through submm view

Description:

Galaxy formation: radio through submm view – PowerPoint PPT presentation

Number of Views:97
Avg rating:3.0/5.0
Slides: 79
Provided by: ValuedGate772
Learn more at: http://www.aoc.nrao.edu
Category:

less

Transcript and Presenter's Notes

Title: Galaxy formation: radio through submm view


1
Galaxy formation radio through submm view Chris
Carilli (NRAO), LANL Cosmology Summer School
2008, Santa Fe, NM
  • General principles revealing dust obscured
    galaxy formation
  • Radio continuum studies
  • submJy radio sources secular galaxy evolution to
    z 1
  • Radio stacking of faint galaxies (BzK, LBG, LAE)
    pushing to normal galaxies at z 1 to 6
  • Massive galaxy and SMBH formation at the end of
    reionization gas, dust, and star formation in
    QSO host galaxies at z6
  • Future probing normal galaxies with ALMA and the
    EVLA

2
References
  • Radio emission from star forming galaxies Condon
    1992, ARAA, 30, 575
  • Submm galaxies Blain et al. 2002, Phys. Rep.,
    369, 111
  • The first sources of light and the reionization
    of the universe, Barkana Loeb 2002, Phys.Rep.,
    349, 125
  • Observations of the high redshift universe,
    Ellis 2007, Saas-Fe advanced course 36
  • Molecular line emission at high redshift Solomon
    Vanden Bout 2005, ARAA, 43, 677
  • Reionization Fan, Carilli, Keating, ARAA, 2006,
    44, 415

3
(sub)mm and radio astronomy unveiling the cold,
obscured universe
Shirley 06
Wilson et al.
Shirley et al.
B335 DSS
HST / OVRO CO
cm/mm observations reveal earliest, most active
sites of star formation
4
Cosmic BackgroundRadiation
1/2 star formation in Universe is obscured by
dust, and re-radiated in FIR
Franceschini 2000
5
Radio through FIR spectrum of star forming galaxy
(M82)
All mechanisms ? massive star formation rate
Thermal dust 20 -- 70K
Synchrotron
Free-Free
  • Total SFR in Mo/yr (0.1 to 100 Mo)
  • SFR 3e-10 LFIR (Lo) (42 -- 122um) (Kennicutt
    1998, ARAA)
  • Only massive stars (gt5Mo) gt factor 5.6 lower

6
Radio-FIR correlation NVSS/IRAS galaxies (Yun
02)
q ? log(FIR/L1.4) 2.3 /- 0.3
SFR (Mo/yr) 6e-29 L1.4 (erg/s/Hz)
7
Redshift evolution of radio-FIR correlation
Spitzer First Look survey (Appleton 04)
Not K-corrected
K-corrected
8
Nature of radio sources at low z starburst--AGN
transition
  • Particle acceleration in SNR shocks
  • ISM fields 1 to 10uG
  • Acceleration in jet shocks
  • Lobe fields 10 -- 100 uG

L1.4 2e30 erg/s/Hz
Sadler/Jackson
9
Radio Surveys - Limits
14
AGN
13
40uJy
12
Log (FIR Luminosity)
ULIRGsArp220 SFR 100 Mo/yr
11
LIRGs M82 SFR 10 Mo/yr
10
Milky Way SFR 1 Mo/yr
9
10
Magic of (sub)mm distance independent method of
studying objects in universe from z0.8 to 10
FIR 1.6e12 Lo
?3
?obs 250 GHz
  • Similar for spectral lines (eg. CO) but not as
    favorable due to
  • Modified RJ power law index for lines 2 lines,
    while for dust 3 to 4
  • Higher order lines may be subthermally excited
    due to density limits

11
Radio through submm spectroscopy cold gas at
high redshift.
Braun 98
HI 21cm fuel for galaxy formation
z0
1
Atomic fine structure lines (CII, OI) ISM
gas cooling
Molecular gas (CO, HCN) fuel for star formation
4
12
(sub)mm spectral line observations of distant
galaxies
HCN ncr gt 1e4 cm-3
  • Low order CO Total (H2) gas masses fuel for
    star formation
  • Dense gas tracers (HCN) active star forming
    clouds (GMCs)
  • Atomic fine structure lines dominant coolant of
    ISM gas
  • Dynamical masses weighing galaxies
  • Gas excitation gt ISM physics densities,
    temperatures
  • Astrochemistry

CII ISM gas cooling
CO ncr gt 1e2 m-3
13
Molecular gas mass X factor from dynamics
  • M(H2) X L(CO(1-0))
  • Milky way X 4.6 MO/(K km/s pc2) (virialized
    GMCs)
  • ULIRGs X 0.8 MO/(K km/s pc2) (CO rotation
    curves)
  • Optically thin limit X 0.2

200pc
Downes Solomon
14
Plateau de Bure Interferometer
  • High resolution imaging at 90 to 230 GHz rms lt
    0.1 mJy, res lt 0.5 (15 of collecting area of
    ALMA)
  • Imaging high order molecular lines (CO, HCN)
  • Observe CII 158um (and other ISM gas cooling
    lines) at zgt6

15
MAMBO IRAM 30m
  • Wide field imaging, and photometry, at 250 GHz
    IRAM 30m Max-Planck Bolometer array 133 pixel
    bolometer camera rms lt 0.5 mJy, res10.6, field
    sizes gt 30
  • Identify dusty starbursts at zgt2
  • Dust/FIR SED

16
Very Large Array
1. Wide-field imaging at 1.4 GHz rms7uJy, 1
res, FoV30 Astrometry gt avoid confusion
Imaging gt AGN vs. Starburst, Lensing?
cm-to-mm SEDs gt redshifts, star formation rates
unhindered by dust 2. Low order CO transitions at
20 to 50 GHz rms lt 0.1 mJy, res lt 0.2 Gas
excitation and mass estimates Gas distribution
and dynamics, Lensing?
17
COSMOS - Project Outline
  • Definitive study of galaxy and SMBH
  • evolution as a function of cosmic
  • environment.
  • 2o2 Field of View
  • Equatorial field
  • ASC imaging
  • Spitzer large program mid-, far-IR
  • Galex UV
  • 11-band ground-based near-IR/optical
  • Xray (XMM, Chandra)

18
submJy radio sources secular galaxy evolution to
z1
  • Full field at 1.4GHz
  • 1.5 resolution
  • rms 8mJy/beam
  • 4000 srcs (10x HUDF)

19
1.4 GHz Source Counts (Hopkins 2000)
AGN
steep flat
starbursts
spirals
SKA EVLA HDF/COSMOS 1st/NVSS
Cambridge
20
VLA-COSMOS vs. HST morphologies
z 0.2
z 0.2
z 1.3
z 1.0
21
VLA-COSMOS - Redshift distribution
radio sources
all galaxies
all Agn(?)
Photo-z 75 Spectroscopic
zs 50, so far 300 0bserved
22
Optical IDs and redshifts of submJy radio sources
(Smolcic 07)
  • 50 spirals/Irr/mergers star forming galaxies
    at z lt 1.2
  • 25 ellipticals/liners low luminosity AGN at
    z 0.3 to 1.5
  • 25 optically faint/red high z starbursts?
    very high z AGN?

23
Radio derived star formation history of the
Universe at zlt1.2



Radio/cosmos
Confirms rapid rise in cosmic star formation rate
density to z1
24
Pushing uJy radio studies to zgt2 Stacking Cosmos
BzK, LBG and LAE
  • Median stacking of high-z dropout samples in
    Cosmos field
  • 30,000 BzK at z1.5 to 2.5
  • 8500 LBGs (U,B,V dropuots) at z 3, 4, 5
  • 100 LAE in NB850 filter at z 5.7
  • normal star forming galaxy populations at high
    redshift
  • Stacking analysis sub-uJy limits

SKA science before the SKA
25
Drop-out technique
  • Reveals 1000s normal galaxies at high redshift
  • UV-derived SFR few Mo/yr w/o dust correction
  • cm densities 0.005 Mpc-3 at z3
  • Galaxy stellar masses 1e10 to 1e11 Mo

U-dropout at z 3
26
Star formation rate density vs. redshift
5x
Standard UV dust extinction correction factor 5
27
BzK galaxies (Klt20) Star forming galaxies at z
1.5 to 2.5
Lowz gal
4000A
stars
z1.7
Ly-break
Daddi et al 2004
  • Stellar masses 1010 to 1011 Mo
  • SFR gt 10 Mo/yr
  • lower z LBG analogs?

28
30,000 sBzK galaxies in Cosmos
30,000 z 2 sBzk SF gal
Pannella et al
Early-type pBzK
other
z2
10 to 100x previous samples
29
1.4 GHz vs. BAB
Robust stacking detections (3000/bin) 2 to 9
/- 0.2 uJy
B23.8
B27.4
No clear trend with BAB
30
1.4 GHz vs. Stellar Mass
2e10
3e11
Increasing SFR w. M
31
1.4 GHz vs. B-z
Increasing SFR w. reddening
32
Specific star formation rate (SSFR SFR/M) vs.
stellar mass
  • Radio no dust-bias, SSFR constant w. M gt
    universality of SF in galaxies
  • UV not corrected for dust more massive SF
    galaxies ( higher SFR) are also more extincted
  • ltUVextinctiongt 5x, but strong trend with SFR
    (or M)
  • 100 Mo/yr factor 13
  • 10 Mo/yr factor 2

10 Mo/yr
Radio-derived SFR
100 Mo/yr
5x
UV-derived SFR (w/o dust corr.)
33
8,500 U, B, V Dropouts (2 lt z lt 5)
B
U
V
z Median 1.4 GHz Flux Density
U 2.5 to 3.5 0.90 /- 0.21 ?Jy B 3.5
to 4.5 0.89 /- 0.42 V gt4.5
1.7 /- 0.68
34
U-dropouts UV vs. radio Star Formation Rates
  • ltSFRuvgt 17 Mo/yr (w/o dust corr.)
  • ltSFRradgt 31 Mo/yr
  • either
  • Radio not good indicator of SFR (ie. radio-FIR
    correlation no longer holds at zgt3)
  • Or
  • ltUVgt extinction factor 2, not factor 5
  • consistent with BzK if ltMgtU 1010 Mo

35
Break-down of radio-FIR correlation inverse
Compton losses off CMB?
IC losses off CMB dominate synchrotron in nuclear
starbursts at zgt4
IC losses dominate in normal galaxies at zgt0.5
dEe/dt ? UB, U?
36
Pushing to normal galaxies during reionization,
eg. z5.7 Ly? galaxies in COSMOS
NB850nm
Murayama et al. 07
  • SUBARU Ly??????????? 10 Mo/yr
  • 100 sources in 2 deg-2 in ?z 5.7 /- 0.05

37
Pushing to normal galaxies during reionization,
eg. z5.7 Ly? galaxies in COSMOS
  • Stacking analysis (100 LAEs)
  • MAMBO S250 lt 2mJy gt SFRlt300
  • VLA S1.4 lt 2.5uJy gt SFRlt125
  • Still factor 10 away from SFR(Lya)

VLA Stacking analysis
Need order magnitude improvement in sensitivity
at radio through submm wavelengths in order to
study earliest generation of normal galaxies.
38
Radio continuum observations of normal galaxy
formation
  • submJy radio surveys secular evolution of
    normal galaxies to z1gt rapid rise in SFRD to
    z1
  • Radio stacking of drop-outs normal galaxies
    at high z
  • reaching uJy levels (pre-SKA science)
  • BzK (z1.5 to 2.5) constant SSFR SFR/M with
    M (or SFR) gt universal SF law (local, not
    global, phenomenon)?
  • BzK Increasing extinction with increasing M or
    SFR
  • LBG (z3) ltextinctionUVgt factor 2, or
    radio-FIR correlation breaks-down at z gt 3
  • LAE (z6) current radio stacking limits are
    still factor 10 away from required sensitivities
    to detect normal galaxies

39
BREAK
40
Massive galaxy and SMBH formation at z6 gas,
dust, and star formation in QSO hosts
  • Why QSO hosts?
  • Spectroscopic redshifts
  • Extreme (massive) systems
  • MB lt -26 gt
  • Lbol gt 1e14 Lo
  • MBH gt 1e9 Mo
  • Rapidly increasing samples
  • zgt4 gt 1000 known
  • zgt5 80
  • zgt6 15

Fan 05

41
Gunn-Peterson Effect toward z6 SDSS QSOs
Pushing into the tail-end of cosmic reionization
gt sets benchmark for first luminous structure
formation
Fan et al 2006
42
Magorrian, Tremaine, Gebhardt, Merritt
QSO host galaxies MBH -- Mbulge relation
  • Most (all?) low z spheroidal galaxies have SMBH
    MBH0.002 Mbulge
  • Causal connection between SMBH and spheroidal
    galaxy formation
  • Luminous high z QSOs have massive host galaxies
    (1e12 Mo)

43
MAMBO 250 GHz surveys of zgt2 QSOs
HyLIRG
1e13 Lo
2.4mJy
  • 1/3 of luminous QSOs have S250 gt 2 mJy,
    independent of redshift from z1.5 to 6.4
  • LFIR 1e13 Lo (HyLIRG) 0.1 Lbol Dust heating
    by starburst or AGN?

44
Dust gt Gas LFIR vs L(CO)
z 6 QSO hosts
Star formation rate
Star formation rate
1e3 Mo/yr
Index1.5
1e11 Mo
Gas mass
Gas Mass
  • Massive gas reservoirs gt 1010 Mo gt 10 x MW
  • SFR gt 1000 Mo/yr

45
Pushing into reionization QSO 114852 at z6.4
  • Highest redshift SDSS QSO (tuniv 870Myr)
  • Lbol 1e14 Lo
  • Black hole 3 x 109 Mo (Willot etal.)
  • Gunn Peterson trough (Fan etal.)

46
  • 114852 z6.42 Dust detection

MAMBO 250 GHz
3
S250 5.0 /- 0.6 mJy LFIR 1.2e13 Lo Mdust
7e8 Mo
  • Dust formation?
  • AGB Winds 1.4e9yr gt tuniv 0.87e9yr
  • gt dust formation associated with high mass star
    formation? Silicate gains (vs. eg. Graphite)
    formed in core collapse SNe (Maiolino 07)?

47
114852 z6.42 Gas detection
VLA
CO3-2 VLA
IRAM
PdBI
1 5.5kpc
  • FWHM 305 km/s
  • z 6.419 /- 0.001
  • Mgas/Mdust 30 starburst galaxies)
  • Size 5.5 kpc
  • M(H2) 2e10 Mo
  • Fuel for galaxy formation

48
11485251 Radio to near-IR SED
TD 50 K
Elvis SED
Radio-FIR correlation
  • FIR excess 50K dust
  • Radio-FIR SED follows star forming galaxy
  • SFR 3000 Mo/yr

49

CO excitation ladder
?2
NGC253
Dense, warm gas CO thermally excited to 6-5,
similar to starburst nucleus Tkin gt 50 K nH2 gt
1e4 cm-3
MW
50
Summary CO Line SEDs
Weiss et al.
  • High z Tgt 50K, ngt 1e4/cm3
  • MW T 20K, n 1e3/cm3
  • Similar to SB nuclei, only 10-100x luminosity gt
    10-100x area.
  • Selection effect -- high z systems discovered
    with mm telescopes gt high order transitions.
  • Need cm searches for normal excitation galaxies.

LVG n5e4, Tgt70K
51
CO rotation curves QSO host galaxy dynamics at
high z
CO 2-1
23221944, z4.2 Molecular Einstein ring Riechers
et al. 2008
50 km/s channels
52
23221944 CO rotation curve lens inversion and
QSO host galaxy dynamics
Riechers 08
  • Galaxy dynamical mass (rlt3kpc) 4.4e10 Mo
  • M(H2) 1.7e10 Mo
  • MBH 1.5e9 Mo (from MgII lines, Eddington)

53
Break-down of MBH -- Mbulge relation at very high
z Use CO rotation curves to get host galaxy
dynamical mass
High z QSO hosts Low z QSO hosts Other low z
galaxies
Perhaps black holes form first?
Riechers
54
Higher Density Tracers CN, HCN HCO
HCO 1-0
HCN 1-0
  • Lines 5-10 fainter than CO
  • ncr 1e5 for low order
  • ncr gt 1e7 for higher ordersgt subthermally
    excited?

200uJy
55
LFIR vs L(CO) SFR vs. total gas mass
  • Star formation efficiency SFR per unit gas
    mass, increases with increasing SFR
  • Gas depletion timescale Mgas/SFR decreases
    with SFR

1e3 Mo/yr
High-z QSOs submm gal
Index1
1e11 Mo
High-z sources 10 -- 100 x Mgas of Milky Way
Index1.5
FIR 1e10 Lo/yr gt SFReff 3e-9 Mo/yr/Mo,
tdep 3e8yr FIR 1e13 Lo/yr gt SFReff 9e-8
Mo/yr/Mo, tdep 1e7yr
56
HCN Dense gas directly associated with star
forming clouds
  • FIR -- HCN linear relation from GMCs to HyLIRGs
  • SFR per unit dense gas mass constant in all
    galaxies
  • Conclusions
  • CO traces all gas
  • HCN traces dense gas gt Counting star forming
    clouds
  • dense/total gas increases with SFR

Index 1
Gao , Wu
57
Krumholz Thompson Kennicutt-Schmidt laws
  • CO-FIR lum FIR ? L(CO)1.5/-0.2
  • K-S law ? ? ?g1.4/-0.15
  • SFR ? ? / timescale
  • Low density gas tracers excited in all gas, such
    that timescale? FF time? ?-0.5 gt SFR ? ?1.5
  • High density gas tracers only excited in high
    density gas, such that all have clouds have
    roughly same (critical) density gt timescale is
    same gt SFR ? ?1?cr0.5
  • Predicts departure from linearity for HCN/HCO in
    galaxies where mean density approaches critical
    density

58
Atomic fine struture lines CII 158um
dominant ISM gas cooling line
CII traces warm dust/star formation
59
CII 158um at z6.4
  • zgt4 gt FS lines observed in (sub)mm bands
  • LCII 4x109 Lo (LNII lt 0.1LCII )
  • CII size 6kpc molecular gas gt
    distributed star formation
  • SFR 6.5e-6 LCII 3000 Mo/yr

Plateau de Bure
IRAM 30m
CII
1
NII
CII CO 3-2
60
CII -- the good and the bad
  • CII/FIR decreases rapidly with LFIR (lower
    heating efficiency due to charged dust grains?)
    gt luminous starbursts are still difficult to
    detect in C
  • Normal star forming galaxies (eg. LAEs) are not
    much harder to detect!

J1623 z6.25
J1148 z6.42
Maiolino , Iono , Malhotra 2000
61
CII in J16233111 at z 6.25
FIR-weaker QSO Host S250 lt 1mJy gt FIR lt 3e12
Lo gt Dust detection should not be a prerequisite
for CII search
Bertoldi 2008
62
Summary of cm/mm detections at zgt5.7 33 quasars
J14253254 CO at z 5.9
  • Only direct probe of host galaxies
  • 10 in dust gt Mdust gt 1e8 Mo
  • 5 in CO gt Mgas gt 1e10 Mo
  • 10 at 1.4 GHz continuum
  • -- Radio loud AGN fraction 6
  • -- SFR gt 1000 Mo/yr
  • 2 in CII gt spatially distributed SFR on kpc
    scales

Current Plateau de Bure is routinely detecting
1mJy lines, and 0.1 mJy continuum at 90GHz!
63
Building a giant elliptical galaxy SMBH at
tuniv lt 1Gyr
10
10.5
  • Multi-scale simulation isolating most massive
    halo in 3 Gpc3 (co-mov)
  • Stellar mass 1e12 Mo forms in series (7) of
    major, gas rich mergers from z14, with SFR 1e3
    - 1e4 Mo/yr
  • SMBH of 2e9 Mo forms via Eddington-limited
    accretion mergers
  • Evolves into giant elliptical galaxy in massive
    cluster (3e15 Mo) by z0
  • Generally consistent with downsizing

Li, Hernquist, Roberston..
8.1
6.5
  • Rapid enrichment of metals, dust in ISM (z gt 8)
  • Rare, extreme mass objects 100 SDSS z6 QSOs
    on entire sky
  • Integration times of hours to days to detect
    HyLIGRs

64
What is EVLA? First steps to the SKA
By building on the existing infrastructure,
multiply ten-fold the VLAs observational
capabilities, including 10x continuum sensitivity
(1uJy), full frequency coverage (1 to 50 GHz),
80x BW (8GHz)
65
What is ALMA? North American, European, Japanese,
and Chilean collaboration to build operate a
large millimeter/submm array at high altitude
site (5000m) in northern Chile -gt order of
magnitude, or more, improvement in all areas of
(sub)mm astronomy, including resolution,
sensitivity, and frequency coverage.
50 x 12m array
Atacama Compact Array 12x7m 4x12m TP
66
ALMA into reionization
  • Spectral simulation of J11485251
  • Detect dust emission in 1sec (5?) at 250 GHz
  • Detect CII in minutes
  • Detect multiple lines, molecules per band gt
    detailed astrochemistry
  • Image dust and gas at sub-kpc resolution gas
    dynamics

CO
HCO
HCN
CCH
LAE, LBGs ALMA will detect dust, molecular, and
FS lines in 1 to 3 hours in normal galaxies at z
6
67
Pushing to normal galaxies spectral lines
SMA
cm telescopes low order molecular transitions --
total gas mass, dense gas tracers
(sub)mm high order molecular lines. fine
structure lines -- ISM physics, dynamics
  • FS lines will be workhorse lines in the study of
    the first galaxies with ALMA.
  • Study of molecular gas in first galaxies will be
    done primarily with cm telescopes

68
Pushing to normal galaxies continuum A
Panchromatic view of galaxy formation
Arp 220 vs z
cm Star formation, AGN
(sub)mm Dust, molecular gas
Near-IR Stars, ionized gas, AGN
69
  • EVLA Status
  • Antenna retrofits now 50 completed.
  • Early science in 2010, using new correlator.
  • Full receiver complement completed 2012.

70
AOS Technical Building
ALMA status Array operations center at 5000m
Japanese antennas at 3000m
71
  • ALMA Status
  • Antennas, receivers, correlator fully prototyped,
    now in production best (sub)mm receivers and
    antennas ever!
  • Site construction well under way Observation
    Support Facility and Array Operations Site
  • North American ALMA Science Center (CVille)
    gearing up for science commissioning and early
    operations
  • Timeline
  • Q1 2007 First fringes at ATF (Socorro)
  • Q1 2009 Three antenna array at AOS
  • Q2 2010 First call for (early science)
    proposals
  • Q4 2010 Start early science (16 antennas)
  • Q4 2012 Full operations

ESO
72
END
ESO
73
SFR distribution of galaxies at low z Radio
versus H? derived
  • Comparable contributions from wide range of
    galaxy type
  • Zero point in SFRD
  • H? 0.013/-0.006 Mo/yr/Mpc3 (Gallego95)
  • Radio 0.022/-0.004 Mo/yr/Mpc3

H?
Jackson/Sadler
74
UV selected galaxies large range in bolometric
luminosity, but little correlation of L_uv and
L_bol
Adelberger 2000
75
Conventional Model
High Correlation!
76
VLBA
2 1.4 GHz
0.2res
0.02 res
0.23mJy
lt 30uJy
Ly a CO 2-1
0.17mJy
  • 1202-0725 z4.7 QSOstarburst (Momjian04)
  • Size 0.2 1kpc
  • Condon limit TB lt 1e5 K gt starburst

77
Clear correlation of FIR luminosity and weak Lya
emission
D
D
D
D
D
D
D
78
Dust formation at extreme redshift Extinction
toward z6.2 QSO and 6.3 GRB starburst model gt
silicate amorphous carbon dust grains (vs. eg.
Graphite) formed in core collapse SNe?
Stratta, Dwek, Maiolino, Shull 2006, 2007
Write a Comment
User Comments (0)
About PowerShow.com