HighSpeed Autonomous Navigation with Motion Prediction for Unknown Moving Obstacles - PowerPoint PPT Presentation

1 / 37
About This Presentation
Title:

HighSpeed Autonomous Navigation with Motion Prediction for Unknown Moving Obstacles

Description:

Dizan Vasquez, Frederic Large, Thierry Fraichard and Christian Laugier ... To design techniques allowing a vehicle to navigate in an environment populated ... – PowerPoint PPT presentation

Number of Views:44
Avg rating:3.0/5.0
Slides: 38
Provided by: Morg193
Category:

less

Transcript and Presenter's Notes

Title: HighSpeed Autonomous Navigation with Motion Prediction for Unknown Moving Obstacles


1
High-Speed Autonomous Navigation with Motion
Prediction for Unknown Moving Obstacles
  • Dizan Vasquez, Frederic Large,
  • Thierry Fraichard and Christian Laugier
  • INRIA Rhône-Alpes Gravir Lab. France
  • IROS 2004

2
Objective
  • To design techniques allowing a vehicle to
    navigate in an environment populated with moving
    obstacles whose future motion is unknown.
  • Two constraints
  • Limited response time f(Dynamicity).
  • Need of reasoning about the future Prediction.
  • Prediction Validity?

3
Autonomous NavigationApproaches
  • Reactive approaches Arkins, Simmons, Borenstein,
    etc.
  • No look-ahead
  • Improved reactive approaches Khatib, Montano,
    Ulrich, etc.
  • Lack of generality
  • Iterative planning approaches Hsu, Veloso
  • Too slow for highly dynamic environment
  • Iterative partial planning Fraichard, Frazzoli,
    Petti

4
Autonomous NavigationProposed Solution
  • Iterative partial planning approach
  • Fast Motion Planning. The concept of Velocity
    Obstacle Fiorini, Shiller is used in an
    iterative motion planner which proposes a safe
    plan for a given time interval.
  • Motion prediction for Moving obstacles. Typical
    behavior of moving obstacles is learned and then
    applied for motion prediction.

5
Motion PlanningPrinciple
  • Iterative planner. Plans computed during a given
    time interval.
  • Incremental calculation of a partial trajectory.
  • Uses a model of the future (prediction).
  • Based on the A algorithm.
  • Uses the Non Linear Velocity Obstacle concept to
    speed up the calculation Large, Shiller
  • Real Time.
  • Adapts to changes.

6
Motion PlanningVelocity Obstacles
  • A NLVO is the set of all the linear velocities of
    the robot that are constant on a given interval
    and that induce a collision before
    .

7
Motion PlanningA implementation
  • Nodes Dated states.
  • Link Motion (velocities).
  • Velocities expanded with a two criteria
    heuristic
  • Time to Collision cost
  • Time to Goal cost

8
Motion PlanningUpdating the Tree
  • Instead of rebuilding the tree at each step, we
    update it.
  • Past configuration are pruned excepting for the
    currently open node.
  • If any collision is detected, another node is
    chosen in the remaining tree, and explored from
    the root.

9
Motion PredictionTraditional Approaches
  • Motion Equations and State Estimation
  • Example

Zhu90
  • Fast.
  • Easy to Implement.
  • Estimate and . Kalman60
  • Short Time Horizon.
  • Equations are not general (intentional
    behaviour?).

10
Motion PredictionLearning-Based Approaches
  • Hypothesis On a given environment, objects do
    not move randomly but follow a pattern.
  • Steps
  • Learning.
  • Prediction.
  • General.
  • Long Time Horizon.
  • Real-Time Capability.
  • Prediction of unobserved behaviors.
  • Unstructured Environments

TadokoroEtAl95 KruseEtAl96 BennewitzEtAl02
11
Motion PredictionProposed Approach
  • The approach we propose is defined by
  • A similarity measure.
  • Use of pairwise clustering algorithms.
  • A cluster representation.
  • Calculation of probability of belonging to a
    cluster.

12
Motion PredictionLearning Stage
  • Dissimilarity
  • Measure

Observed Trajectories
Dissimilarity Matrix
Cluster Mean Values and Std. Dev.
2. Pairwise Clustering
Algorithm
3. Calculation Of Cluster Representation
Trajectory Clusters
13
Motion PredictionDissimilarity Measure
q
di
.
dj
t
Ti
Tj
14
Motion PredictionCluster Representation
  • Cluster Mean-Value
  • Cluster Standard Deviation

15
Motion PredictionPrediction Stage
  • The probability of belonging to a cluster is
    modeled as a Gaussian
  • Where
  • Prediction Maximum likelihood or sampling

16
Motion PredictionExperimental Results
  • Implementation using Complete-Link Hierarchical
    Clustering and Deterministic Annealing
    Clustering.
  • Benchmark using Expectation-Maximization
    Clustering as described in Bennewitz02

17
Motion PredictionExperimental Results
  • Evaluation using a performance measure.
  • Tests ran with simulated data.

18
Motion PlanningResults
  • Experiments have been performed in a simulated
    environment.

19
Conclusions
  • In this paper a navigation approach is proposed.
    It consists of two components
  • A learning-based motion prediction technique
    able to produce long-term motion estimates.
  • An iterative motion planner based on the concept
    of Non-Linear Velocity Obstacle which adapts its
    scope according to available time.

20
Perspectives
  • Work in a real system installed in the
    laboratorys parking.
  • Research on unknown behaviors prediction.

21
Thank You!
22
PWE Calcul du Nombre de Clusters
23
Résultats Expérimentaux Génération de
lensemble dentraînement (cont)
  • Les points correspondant aux points de control
    sont génères en utilisant des distributions
    gaussiennes avec un écart type fixe.
  • Le mouvement a été simulé en avançant en pas
    fixes depuis le dernier point de control dans la
    direction du prochain daccord a une distribution
    gaussienne. On considère avoir arrivé dans le
    prochain point de control quand on est plus près
    quun certain seuil.
  • Le pas 2 es répété jusquà on arrive au dernier
    point de control.

24
Quelques Concepts Importantes
  • Configuration.
  • Mouvement.
  • Estimation de Mouvement.
  • Horizon Temporelle.

25
PWE Deterministic Annealing
  • Lappartenance dans un cluster est
    calculée de façon itérative
  • INITIALISER et AU HAZARD
  • température T?T0
  • WHILE TgtTfinal
  • s?0
  • REPEAT
  • Estimation Calculer en fonction de
  • Maximisation Calculer a partir de
  • s?s1
  • UNTIL tous ( , ) convergent
  • T??T ? ?
  • END

26
Experimental ResultsPerformance Measure
27
Experimental Results Learning stage results
28
Experimental Results Learning stage results
Résultats Expérimentaux
29
Experimental Results Cluster Examples
30
ConclusionsContributions
  • We have proposed an approach based on three
    calculations
  • Dissimilarity Measure.
  • Cluster Mean-Value.
  • Probability of Belonging to a Cluster.

31
ConclusionsContributions (cont)
  • We have implemented our approach using
    Complete-Link and Deterministic Annealing
    Clustering
  • We have implemented the approach presented on
    Bennewitz 02
  • According to our performance measure, our
    technique has a better performance than that
    based on Estimation-Maximization.

32
PWE Comparaison avec EME
  • PWE
  • Trouve les groupes et leur représentations en
    deux pas.
  • Calcule la valeur de K avec lalgorithme
    Complete-Link.
  • Peut utiliser tous les algorithmes Pairwise
    Clustering.
  • Représente les clusters avec la trajectoire
    moyenne.
  • EME
  • Trouve les groupes et leur représentations
    simultanément.
  • Calcule la valeur de K avec un algorithme
    incrémental.
  • Utilise lalgorithme Expectation-Maximization
  • Représente les clusters avec des distributions
    gaussiennes.

33
Estimation basé sur EM (EME)
  • Nous considérons cette technique Bennewitz 02
    comme létat de lart pour notre problème
  • Apprentissage
  • Trouve les groupes et ses représentations
    (séquences de gaussiennes) simultanément.
  • Utilise lalgorithme EM (Expectation-Maximization)
  • Trouve le nombre de clusters en utilisant un
    algorithme incrémental.
  • Estimation
  • Basé sur le calcul de la vraisemblance dune
    trajectoire partielle observé opartial sous
    chaque un des chemins ?k comme une multiplication
    de probabilités.

34
Estimation basé sur EM (EME)Algorithme EM
  • Calcule les assignations cik et les chemins ?k
  • Expectation Calcule la valeur espéré Ecik sous
    les chemins courants ?k.
  • Maximization Assume que cik Ecik et calcule
    des nouveaux chemins ?k
  • Fait ?k?k et recommence

.
.
.
.
.
.
.
?k2
?k10
?k1
35
Estimation basé sur EM (EME)Estimation
  • La vraisemblance dune trajectoire di sous un
    chemin ?k est

di5
.
.
.
.
di2
.
di1
.
.
?k2
?k10
?k1
36
Résultats ExpérimentauxMesure de Performance
  • Fonction PerformanceMetric( ?,C,percentage)
    result?0
  • FOR chaque trajectoire ?i in the test set ? DO
    calculate ?ipercentage
  • trouver le cluster Ck ayant la majeur
    vraisemblance pour ?ipercentage
  • result?resultd(?i,µk)
  • END FOR
  • result? result/N?

37
Estimation basé sur EM (EME)Avantages /
Inconvénients
  • Horizons Temporelles Longs
  • Ils ne fait pas de suppositions par rapport a la
    forme des trajectoires
  • Il estime le nombre de clusters
  • Il nest pas capable de prédire des trajectoires
    quil na jamais observé.
Write a Comment
User Comments (0)
About PowerShow.com