Variational Message Passing for Learning Object Categories PowerPoint PPT Presentation

presentation player overlay
1 / 75
About This Presentation
Transcript and Presenter's Notes

Title: Variational Message Passing for Learning Object Categories


1
Variational Message Passing for Learning Object
Categories
Li Fei-Fei, CaltechJohn Winn, Microsoft Research
Cambridge
2
Overview
  • The problem Object Categorization
  • The model and the goal
  • The tutorial Learning Inference
  • Bayesian inference
  • Variational inference
  • Variational Message Passing
  • The reformulation and experiments
  • The graphical model and VMP
  • Experiments with the Caltech-101 Object
    Categories
  • (bonus) Extensions to the model

3
Variability within a category
Intrinsic
Deformation
4
Constellation model of object categories
Burl, Leung, Weber, Welling, Fergus, Fei-Fei,
Perona, et al.
5
Goal
6
Goal
Burl, Leung, et al. 96 98 Weber, Welling, et
al. 98 00, Fergus, et al. 03
7
Goal
  • Estimate uncertainties in models
  • Do full Bayesian learning
  • Reduce the number of training examples

8
Now John will tell us...
  • The problem Object Categorization
  • The model and the goal
  • Learning the model is difficult
  • The tutorial Solution to Learning Inference
  • Bayesian inference
  • Variational inference
  • Variational Message Passing (VMP)
  • The reformulation and experiments
  • The graphical model and VMP
  • Experiments with the Caltech-101 Object
    Categories
  • Extensions to the model

9
Modelling the vision problem
  • Directed graph
  • Nodes represent variables
  • Links show dependencies
  • Conditional distributions at each node
  • Defines a joint distribution

P(C,L,S,I)P(L) P(C) P(SC) P(IL,S)
10
Bayesian inference
Object class
C
Observed variables V and hidden variables H.
Hidden
Surface colour
Lighting colour
S
L
Inference involves finding
P(H1, H2 V)
Image colour
I
Observed
11
Bayesian inference vs. ML/MAP
  • Consider learning a parameter ??H.

Maximum of P(V ?)
P(V ?)
?
?ML
12
Bayesian inference vs. ML/MAP
  • Consider learning a parameter ??H.

High probability density
P(V ?)
?
?ML
13
Bayesian inference vs. ML/MAP
  • Consider learning a parameter ??H.

P(V ?)
?
?ML
Samples
14
Bayesian inference vs. ML/MAP
  • Consider learning a parameter ??H.

P(V ?)
?
Variational approximation
?ML
15
Variational Inference
(in three easy steps)
  • Choose a family of variational distributions
    Q(H).
  • Use KL divergence as a measure of distance
    between P and Q.
  • Find Q which minimises KL(QP)

16
KL Divergence
Variational Inference does this.
Minimising KL(QP)
P
17
Minimising the KL divergence
  • For arbitrary Q(H)

maximise
fixed
minimise
where
  • We choose a family of Q distributions where L(Q)
    is tractable to compute.

18
Minimising the KL divergence
maximise
fixed
19
Factorised Approximation
  • Assume Q factorises

No further assumptions are required!
20
Applying by hand
Fei-Fei et al. 2003
21
Variational Message Passing
  • VMP makes it easier and quicker to apply
    factorised variational inference.
  • VMP carries out variational inference using local
    computations and message passing on the graphical
    model.
  • Modular algorithm allows modifying, extending or
    combining models.

22
VMP I The Exponential Family
  • Conditional distributions expressed in
    exponential family form.




T
)
(
)
(
)
(
)

(
ln
X
f
g
X
X
P
?
u
?
?
sufficient statistics vector
natural parameter vector
23
VMP II Conjugacy
  • Parents and children are chosen to be conjugate
    i.e. same functional form

X
Y
same
Z
  • Examples
  • Gaussian for the mean of a Gaussian
  • Gamma for the precision of a Gaussian
  • Dirichlet for the parameters of a discrete
    distribution

24
VMP III Messages
  • Conditionals
  • Messages

X
Y
Z
25
VMP IV Update
  • Optimal Q(X) has same form as P(X?) but with
    updated parameter vector ?

Computed from messages from parents
  • These messages can also be used to calculate the
    bound on the evidence L(Q) see Winn Bishop,
    2004.

26
VMP Example
  • Learning parameters of a Gaussian from N data
    points.

µ
?
mean
precision (inverse variance)
x
data
N
27
VMP Example
Message from ? to all x.
µ
?
need initial Q(?)
x
N
28
VMP Example
Messages from each xn to µ.
µ
?
x
N
Update Q(µ) parameter vector
29
VMP Example
Message from updated µ to all x.
µ
?
x
N
30
VMP Example
Messages from each xn to ?.
µ
?
x
N
Update Q(?) parameter vector
31
Initial Configuration
?
µ
32
After Updating Q(µ)
?
µ
33
After Updating Q(?)
?
µ
34
Converged Solution
?
µ
35
VMP Software VIBES
  • Free download from vibes.sourceforge.net

36
Now back to Fei-Fei...
  • The problem Object Categorization
  • The model and the goal
  • Learning the model is difficult
  • The tutorial Solution to Learning Inference
  • Bayesian inference
  • Variational inference
  • Variational Message Passing
  • The reformulation and experiments
  • The graphical model and VMP
  • Experiments with the Caltech-101 Object
    Categories
  • Extensions to the model

37
(No Transcript)
38
The Generative Model
39
the hypothesis (h) node
h is a mapping from interest points to parts
40
the hypothesis (h) node
8
5
2
10
7
3
9
1
4
6
e.g. hj 2, 4, 8
h is a mapping from interest points to parts
41
the spatial node
42
the spatial parameters node
43
the appearance node
PCA coefficients on fixed basis
Pt 1. (c1, c2, c3,)
Pt 2. (c1, c2, c3,)
Pt 3. (c1, c2, c3,)
44
the appearance parameter node
45
(No Transcript)
46
Goal
?1
?2
?n
where ? µX, ?X, µA, ?A
47
Goal
?1
?2
?n
where ? µX, ?X, µA, ?A
Fei-Fei et al. 03, 04
48
Inference Variational Message Passing
49
Inference Variational Message Passing
?A
?X
?X
?A
?X
?X
h
h
X
X
A
I
50
Inference Variational Message Passing
Node ? the mean
?A
?X
?X
?A
?X
?X
h
h
X
X
A
I
51
Inference Variational Message Passing
Node h each hypothesis
  • Messages

?A
?X
?X
?A
?X
?X
h
h
X
X
A
I
52
Experiments
Training 1- 6 images (randomly drawn)
Detection test
  • 50 fg/ 50 bg images
  • object present/absent

Datasets foreground and background
The Caltech-101 Object Categories
www.vision.caltech.edu/feifeili/Datasets.htm
53
No Manual Preprocessing
No labeling
No segmentation
No alignment
54
Faces
Motorbikes
Airplanes
Spotted cats
Fergus et al. 2003
Weber, Fergus, et al.
55
(No Transcript)
56
(No Transcript)
57
(No Transcript)
58
(No Transcript)
59
(No Transcript)
60
(No Transcript)
61
Number of training examples
62
Number of training examples
63
Number of training examples
64
Number of training examples
65
(No Transcript)
66
ML vs. MAP vs. Bayes (Variational)
67
Conclusions
  • Bayesian inference is very useful and doesnt
    have to be scary.
  • VMP has been successfully applied to several
    vision problems.
  • Bayesian inference gives improved results over
    ML/MAP for real systems with real data.
  • Experiments on a large dataset (Caltech-101
    Object Categories)

68
Extensions with Probabilistic PCA
c1
Pre-fixed PCA basis
Projection onto PCA basis
c2
..
c10
69
Extensions with Probabilistic PCA
?X
?A
?X
?A
?
A
W
h
?
Y
X
I
?
Bayesian Probabilistic PCA
Tipping, Bishop 98 99
70
(No Transcript)
71
(No Transcript)
72
(No Transcript)
73
Probabilistic PCA
Normal PCA
74
(No Transcript)
75
Acknowledgments
Caltech Vision Lab, Pietro Perona, Rob Fergus,
Andrew Zisserman, Christopher Bishop, Tom Minka
Write a Comment
User Comments (0)
About PowerShow.com