The statistical properties and possible causes of polar motion prediction errors - PowerPoint PPT Presentation

1 / 29
About This Presentation
Title:

The statistical properties and possible causes of polar motion prediction errors

Description:

This presentation is focused on the pole coordinates data prediction, ... Department of Gravimetry, Moscow, Russia Leonid Zotov (LZ) 1740 Paris Observatory, ... – PowerPoint PPT presentation

Number of Views:67
Avg rating:3.0/5.0
Slides: 30
Provided by: waw47
Category:

less

Transcript and Presenter's Notes

Title: The statistical properties and possible causes of polar motion prediction errors


1
The statistical properties and possible causes of
polar motion prediction errors
Wieslaw Kosek(1) , Maciej Kalarus(2), Agnieszka
Wnek(1), Maria Zbylut(1) (1) Environmental
Engineering and Land Surveying, University of
Agriculture in Krakow, Poland (2) Space Research
Centre, Polish Academy of Sciences, Warsaw,
Poland
XXIX General Assembly, Honolulu, Hawaii - August
3 - 14, 2015
2
  • Future EOP data are needed to compute real-time
    transformation between the celestial and
    terrestrial reference frames. This transformation
    is important for the NASA Deep Space Network,
    which is an international network of antennas
    that supports
  • - interplanetary spacecraft missions,
  • - radio and radar astronomy
    observations,
  • - selected Earth-orbiting missions.

3
EOP Prediction international cooperation
  • Earth Orientation Parameters Prediction
    Comparison Campaign (EOPPCC)
  • (Oct. 2005 Mar. 2008) H. Schuh (Chair),
    W. Kosek, M. Kalarus
  • The goal comparison of the EOP prediction
    results from different methods . 10 participants,
    Weekly predictions.
  • IERS Working Group on Predictions (WGP)
  • (Apr. 2006 Oct. 2009) W. Wooden
    (Chair), T. Van Dam (input data) , W. Kosek
    (algorithms)
  • The goal to show advantages and disadvantages
    of different prediction algorithms and quality of
    different data
  • IERS Workshop on EOP Combination and Prediction
  • (Warsaw, 19-21 October 2009) W. Kosek, B. Wooden
    (Chairs)
  • Recommendations
  • set goals for EOP prediction accuracy
  • create a short (two week) prediction series and
    a longer (one year) prediction series
  • investigate the feasibility of initiating
    operational ensemble EOP predictions
  • investigate ensemble geophysical analyses and
    forecasts with the goal of creating operational
    ensemble geophysical analysis and forecasts
  • Earth Orientation Parameters Combination of
    Prediction Pilot Project (EOPCPPP)
  • (Oct. 2010 now ) Chair B. Luzum,
    co-chair W. Kosek,
  • The goal To determine the feasibility and
    benefits of combining EOP predictions on a daily
    basis and to determine the best algorithms for
    EOP predictions combinations.

4
DATA
  • x, y from the IERS EOPC04_IAU2000.62-now (1962.0
    - 2015.6), ?t 1 day, http//hpiers.obspm.fr/ier
    s/eop/eopc04_05/,
  • Long term earth orientation data EOP C01 IAU2000
    (1846-now) http//www.iers.org/IERS/EN/DataProduct
    s/EarthOrientationData/eop.html
  • x,y pole coordinates data prediction results from
    different participants of the EOPCPPP, ?t 1
    day, http//www.cbk.waw.pl/eopcppp/
  • http//maia.usno.navy.mil/eopcppp/eopcppp.htm
    l
  • Equatorial and axial components of atmospheric
    angular momentum from NCEP/NCAR,
    aam.ncep.reanalysis. (1948 - 2009.3) ?t 0.25
    day, ftp//ftp.aer.com/pub/anon_collaborations/sba
    /,
  • Equatorial components of ocean angular momentum


    c20010701.oam (Jan. 1980 - Mar. 2002) ?t 1
    day, ECCO_kf066b.oam (Jan. 1993 - Dec.
    2008), ?t 1 day, http//euler.jpl.nasa.gov/sbo/
    sbo_data.html,

5
(No Transcript)
6
EOPPCC (2005-2008) RESULTS
  • Mean prediction errors (in mas) of x, y pole
    coordinates data computed from prediction results
    of different participants in the EOPPCC.

7
The participants of the EOPCPPP and their
contribution to x,y predictions.
Author Institute Total number of computed predictions of x, y
Brian Luzum (BL) U.S. Naval Observatory, Washington DC, USA 1630 1083 comb
Daniel Gambis (DG) Paris Observatory, Paris, France 1740
Leonid Zotov (LZ) Sternberg Astronomical Institute of Moscow State University, Department of Gravimetry, Moscow, Russia 1360 1360 1360
Maciej Kalarus (MK) Space Research Centre, PAS, Warsaw, Poland 1591
Richard Gross (RG) Jet Propulsion Laboratory, Pasadena, California, USA 1663
Viktor Tissen (VT) Siberian Scientific Research Institute of Metrology and Siberian State Geodetic Academy, Russia 1667
Wieslaw Kosek (WK) Space Research Centre, PAS, Warsaw, Poland 1782
Xu Xueqing (XX) Shanghai Astronomical Observatory, China 1532
Zinovy Malkin (ZM) Pulkovo Observatory, Russia 1777
8
EOPCPPP (from 2010) RESULTS
  • An example of 90-day polar motion predictions at
    different starting prediction epochs from
    different participants of the EOPCPPP

9
Standard deviation (SDE)
Mean absolute error (MAE)
10
Skewness (SKE)
skewness is a measure of the asymmetry of the
probability distribution of a real-valued random
variable. Negative skew indicates that the tail
on the left side of the probability density
function is longer than the right side. If the
distribution is symmetric then skewness is zero.

- third moment about the mean
- standard deviation error
- the expectation operator.
11
Kurtosis (CUR)
(Gr. ???t??, ang. bulging) is a measure of the
"peakedness" of the probability distribution of a
real-valued random variable,
- fourth moment about the mean
- standard deviation error
- the expectation operator.
12
Mean absolute error (MAE), standard deviation
(SDE), skewness and kurtosis together with their
error bars of x (blue), y (red) predictions
computed by Brian Luzum.
13
Mean absolute error (MAE), standard deviation
(SDE), skewness and kurtosis together with their
error bars of x (blue), y (red) predictions
computed by Valery Tissen.
14
Mean absolute error (MAE), standard deviation
(SDE), skewness and kurtosis together with their
error bars of x (blue), y (red) predictions
computed by Zinovy Malkin.
15
Mean absolute error (MAE), standard deviation
(SDE), skewness and kurtosis together with their
error bars of x (blue), y (red) predictions
computed by Wieslaw Kosek.
16
Mean absolute error (MAE), standard deviation
(SDE), skewness and kurtosis together with their
error bars of x (blue), y (red) predictions
computed by Maciej Kalarus.
17
Absolute values of the differences between the
IERS x, y pole coordinates data and their LSAR
predictions and the SDE, MAE, SKE and KUR of
these differences in 1986.5 - 2015.5
18
LSAR prediction errors of IERS x, y pole
coordinates data and of x, y pole coordinates
model data computed from AAMOAM and AAM
excitation functions
- pole coordinates model data,
  • equatorial fluid excitation functions (AAM, OAM),
  • complex-valued Chandler frequency,
  • where and
    is the quality factor

19
EOPPCC
EOPCPPP
Cor_coef0.595 0.022
Cor_coef0.549 0.022
The differences between the IERS x,y pole
coordinates data and their LSAR 90-day
predictions and time series of these differences
for one (purple) and two (green) weeks in the
future.
20
The mean FTBPF amplitude spectra (?0.0003) of
the differences between the IERS x-iy pole
coordinates data and their LSAR predictions at
1, 2 and 4 weeks in the future
21
Time variable FTBPF amplitude spectra (?0.001)
of the differences between the IERS x-iy pole
coordinates data and their LSAR predictions at
1, 2 and 4 weeks in the future
22
Combination of complex demodulation and the
Fourier transform low pass filter (CDFTLPF)
1. Multiplication of the time series by
complex-valued harmonic with frequency
2. Filtration of the transformed signal using
FTLPF of complex-valued time series 3.
Computation of instantaneous phases
.
  • transmittance function,

? - window halfwidth
23
Amplitudes and phases of the Chandler (green) and
Annual (x-blue, y-red) oscillations computed by
combination of complex demodulation and the
Fourier transform low pass filter (CDFTLPF)
24
First differences of amplitudes (x-red, y-orange)
and the products of amplitudes and phase
differences (x-navy blue, y-blue) of the
Chandler, annual and semi-annual oscillations
computed by the CDFTLPF combination.
25
CONCLUSIONS
The pole coordinates data mean prediction errors
for different participants of the EOPCPPP are
different due to different prediction techniques
applied as well as different time span of data to
compute them. The skewness and kurtosic values
of the differences between pole coordinates data
and their predictions for different prediction
lengths and for different participants of the
EOPCPPP are close to 0 and 3 for , respectively
which means that they follow normal distribution.
The increase of the differences between pole
coordinates data and their prediction with the
prediction length is caused by mismodelling of
the irregular Chandler and annual oscillations in
the forecast models.
26
IERS Rapid Service/Prediction Centre
  • Wyznaczaniem prognoz EOP zajmuje sie IERS RS/PC w
    US Naval Observatory w Waszyngtonie
  • UT1-UTC prognozowany jest z wykorzystaniem
    prognozy skladowej osiowej momentu pedu atmosfery
    (Johnson et al., 2005) otrzymywanej w procesie
    dynamicznego wyznaczenia modelu cyrkulacji
    atmosfery.


  • wspólrzedne x, y bieguna prognozowane sa
    kombinacja metody najmniejszych kwadratów i
    autoregresji (LSAR) (Kosek i in., 2004).



  • obecna dokladnosc modelu precesji-nutacji IAU
    2006/2000A jest bardzo wysoka dlatego residua
    precesji-nutacji dX, dY pokazuja jedynie
    niedeterministyczny sygnal z okresem ok. 430 dni
    i o amplitudzie rzedu 0.3 mas pochodzacy od
    rotacji cieklego jadra Ziemi. Prognoza precesji i
    nutacji wyznaczana jest jako ekstrapolacja modelu
    IAU 2006/2000A.

27
PROGNOZOWANIE ZMIAN EOP
  • W celu uzyskania informacji o pozycji obiektu
    znajdujacego sie poza rotujaca Ziemia nalezy
    wiedziec jak maja sie do siebie wspólrzedne
    stacji obserwacyjnej okreslone w ukladzie
    ziemskim wzgledem wspólrzednych tego obiektu
    okreslonych w ukladzie niebieskim. Obserwacje
    technikami VLBI, SLR, GNSS, DORIS pozwalaja
    obecnie na wyznaczanie ukladów niebieskiego i
    ziemskiego z wysoka dokladnoscia, jednak nie
    pozwalaja na wyznaczenie parametrów orientacji
    Ziemi w czasie rzeczywistym. Nawiazanie ukladów w
    czasie rzeczywistym jest mozliwe dzieki prognozom
    parametrów orientacji Ziemi (x, y, UT1-UTC, dX,
    dY).
  • Prognozy EOP wykorzystywane sa miedzy innymi
    przez NASA Deep Space Network (DSN), która jest
    siecia anten sluzacych do kontroli
  • - misji miedzyplanetarnych (Cassini,
    Opportunity, Spirit, Mars Global Serveyor,
    Rosetta, Stardust, Voyager-1, Voyager-2).,
  • - radiowych i radarowych obserwacji
    astronomicznych,
  • - niektórych okoloziemskich misji
    kosmicznych.
  • DSN jako najwiekszy i najlepiej wyposazonym
    systemem telekomunikacyjny na swiecie sklada sie
    z trzech kompleksów komunikacyjnych
  • - Goldstone, California, pustynia Mojave
  • - Madrid, Spain
  • - Canberra, Australia.

28
(No Transcript)
29
The mean LSAR prediction errors of IERS x, y
pole coordinates data (black), and of x, y pole
coordinates model data computed from AAMOAM
(red) excitation functions as well as by summing
the DWTBPF components corresponding to Chandler,
annual and shorter period oscillations (green)
Write a Comment
User Comments (0)
About PowerShow.com