Partially Disjunctive Heap Abstraction - PowerPoint PPT Presentation

1 / 42
About This Presentation
Title:

Partially Disjunctive Heap Abstraction

Description:

Heap Abstraction Roman Manevich Mooly Sagiv Tel Aviv University G. Ramalingam John Field IBM T.J. Watson – PowerPoint PPT presentation

Number of Views:110
Avg rating:3.0/5.0
Slides: 43
Provided by: Roma118
Category:

less

Transcript and Presenter's Notes

Title: Partially Disjunctive Heap Abstraction


1
Partially DisjunctiveHeap Abstraction
  • Roman ManevichMooly SagivTel Aviv University

G. RamalingamJohn Field IBM T.J. Watson
2
Motivation
  • Analysis of Object Oriented programs is hard
  • Recursive data structures
  • Unbounded number of objects
  • Destructive update of references
  • Scalable heap analyses exist
  • e.g., flow-insensitive
  • Not precise enough for verification
  • Precise heap analyses exist
  • e.g., SRW shape analysis
  • Scaling is very challenging

3
Motivating exampleverifying mark phase of GC
// _at_Ensures marked REACH(root) void mark(Node
root, NodeSet marked) Node x if (root
! null) NodeSet pending new
NodeSet() pending.add(root) marked.clear() w
hile (!pending.isEmpty()) x
pending.selectAndRemove() marked.add(x)
if (x.left ! null) if
(!marked.contains(x.left))
pending.add(x.left) if (x.right ! null)
if (!marked.contains(x.right)
pending.add(x.right)
4
Motivating exampleverifying mark phase of GC
// _at_Ensures marked REACH(root) void mark(Node
root, NodeSet marked) Node x if (root
! null) NodeSet pending new
NodeSet() pending.add(root) marked.clear() w
hile (!pending.isEmpty()) x
pending.selectAndRemove() marked.add(x)
if (x.left ! null) if
(!marked.contains(x.left))
pending.add(x.left) if (x.right ! null)
if (!marked.contains(x.right)
pending.add(x.right)
5
Motivating exampleverifying mark phase of GC
// _at_Ensures marked REACH(root) void mark(Node
root, NodeSet marked) Node x if (root
! null) NodeSet pending new
NodeSet() pending.add(root) marked.clear() w
hile (!pending.isEmpty()) x
pending.selectAndRemove() marked.add(x)
if (x.left ! null) if
(!marked.contains(x.left))
pending.add(x.left) if (x.right ! null)
if (!marked.contains(x.right)
pending.add(x.right)
6
Motivating exampleverifying mark phase of GC
root
u6
x
left
u5
left
left
right
pending rootmarked
right
left
right
u4
7
Motivating exampleverifying mark phase of GC
root
u6
x
left
u5
left
left
right
pending u3,u2marked u1
right
left
right
u4
8
Motivating exampleverifying mark phase of GC
root
u6
left
u5
left
left
right
pending u4,u2marked u1,u3
right
left
x
right
u4
9
Motivating exampleverifying mark phase of GC
root
u6
left
u5
left
left
right
pending u2marked u1,u3,u4
right
left
x
right
u4
10
Motivating exampleverifying mark phase of GC
root
u6
left
x
u5
left
left
right
pending marked u1,u3,u4,u2
right
left
right
u4
11
Motivating exampleverifying mark phase of GC
root
u6
left
x
u5
left
left
right
pending marked u1,u3,u4,u2
right
left
DONE
right
u4
12
Motivating exampleverifying mark phase of GC
root
u6
garbage
garbage
left
x
u5
left
left
right
pending marked u1,u3,u4,u2
right
left
right
u4
13
Motivating exampleverifying mark phase of GC
root
x
left
pending marked u1,u3,u4,u2
right
left
right
u4
14
Motivating exampleverifying mark phase of GC
  • Powerset heap abstraction
  • 584 seconds, 189,772 abstract heaps
  • Definitely too expensive
  • Can we verify more efficiently?
  • Partially disjunctive heap abstraction
  • 3 seconds, 1,133 abstract heaps
  • TVLA system

15
Overview and main results
  • New (parametric) heap abstraction
  • Uses a heap similarity criterion
  • Merges similar heaps
  • Robust implementation
  • Abstraction of choice among TVLA users
  • Suitable for other shape analysis systems
  • Empirical results
  • Significant speedups (2 orders of magnitude)
  • Precise in most cases

16
Talk outline
  • Shape analysis background
  • Representing heaps via logical structures
  • Disjunctive (powerset) heap abstraction
  • Partially disjunctive heap abstraction
  • Via universe congruence similarity
  • Empirical results
  • Related work
  • Future work
  • Conclusions

17
Shape analysis viaFirst-Order logic
  • SRW 2002 Parametric shape analysis via
    3-valued logic
  • Concrete heaps represented by 2-valued structures
    over predicate symbols P
  • A set of individuals (nodes) U
  • Interpretation of predicate symbols in Pp0() ?
    0,1p1(v) ? 0,1p2(u,v) ? 0,1

18
Concrete heap
root
unary predicates
left
x rootsetmarked setpending rroot
left
left
right
right
left
rrootsetmarked
binary predicates
x
left right
right
19
3-valued structures
  • 2-valued structures abstracted into3-valued
    structures by merging individuals
  • p0() ? 0,1,1/2p1(v) ? 0,1,1/2p2(u,v) ?
    0,1,1/2
  • Kleenes partially ordered set of logical values
  • 0 ? 1 1/2

1/2
1
0
20
Canonical abstraction
  • Merge individuals with same values for all unary
    predicates (canonical name)
  • Bounded structure with at most 2A individuals
  • A set of unary predicates

21
Canonical abstraction
root
left
A
x(v) root(v)setmarked(v) setpending(v)rroot
(v)
left
left
right
rrootsetmarked
right
left
rrootsetmarked
x
right
rrootsetmarked
22
Canonical abstraction
root
left
left
left
right
rrootsetmarked
right
?x0,root0,rroot1,setmarked1,setpending
0?
left
rrootsetmarked
x
right
rrootsetmarked
23
Canonical abstraction
root
left
left
left
right
rrootsetmarked
right
?x0,root0,rroot1,setmarked1,setpending
0?
?x0,root0,rroot1,setmarked1,setpending
0?
left
rrootsetmarked
x
right
rrootsetmarked
24
Canonical abstraction
root
left
?x0,root0,rroot0,setmarked0,setpending
0?
left
left
right
rrootsetmarked
right
?x0,root0,rroot1,setmarked1,setpending
0?
?x0,root0,rroot1,setmarked1,setpending
0?
left
rrootsetmarked
x
right
rrootsetmarked
25
Canonical abstraction
root
left
?x0,root0,rroot0,setmarked0,setpending
0?
?x0,root0,rroot0,setmarked0,setpending
0?
left
left
right
rrootsetmarked
right
?x0,root0,rroot1,setmarked1,setpending
0?
?x0,root0,rroot1,setmarked1,setpending
0?
left
rrootsetmarked
x
right
rrootsetmarked
26
Canonical abstraction
root
left
left
left
right
rrootsetmarked
right
left
rrootsetmarked
x
right
rrootsetmarked
27
Abstract heap
Bounded number of individuals
root
left
left
left
right
right
rrootsetmarked
x
left
right
rrootsetmarked
28
Powerset heap abstraction
  • ? canonical abstraction
  • ?pow(X) ?(s) s ? X
  • LUB (join) is set union
  • Worst-case is doubly-exponential in A
  • Can make unnecessary distinctions

29
Partially disjunctiveheap abstraction
  • Use a heap-similarity criterion
  • We defined similarity by universe congruence
  • Merge similar heaps
  • Avoid merging dissimilar heaps

30
Universe congruent heaps
root
root
left
left
x
left
left
left
left
right
rrootsetmarked
right
rrootsetmarked
right
right
x
left
left
right
rrootsetmarked
rrootsetmarked
right
31
Result of merge
root
left
x
left
left
rrootsetmarked
right
left
right
left
right
left
rrootsetmarked
left
right
32
Non-congruent heaps no merge
root
root
left
left
x
left
left
left
left
right
rrootsetmarked
right
rrootsetmarked
right
right
x
left
left
right
rrootsetpending
rrootsetmarked
right
33
Definition of partially disjunctiveheap
abstraction
  • Two heaps are similar iff they are universe
    congruent (same canonical names)
  • ?piC merge universe congruent heaps
  • ?pi(X) ?piC C ? ?pow(X)

34
Characteristics of the partially disjunctive heap
abstraction
  • 3-valued structures partially-ordered
  • No LUB over singleton structure sets
  • if S1 ?pi S2 ?pi(S1,S2) ?piS1,S2
    else ?pow(S1,S2) S1,S2
  • Retain definite values of unary predicates
  • Size of set can be reduced exponentially

35
Running times
36
Space consumption
37
Related work
  • Reducing cost of powerset-based analysis
  • Function space domain construction
  • ESP PLDI 02
  • Deutsch PLDI 94
  • Widening operators Bagnara et el. VMCAI03

38
Future work
  • Experiment with other similarity criteria
  • Structures with different universes
  • Deflating operators
  • Widening operators

39
Conclusions
  • A new (parametric) heap abstraction
  • Partially disjunctive
  • Merges similar abstract heap descriptors
  • Significantly more efficient than full powerset
  • Essential for many TVLA analyses
  • Often no loss of precision in practice

40
The End
41
Parametric partial isomorphism
  • Structures S1?U1,I1? and S2?U2,I2?
  • Isomorphic iff
  • Exists bijection f U1?U2
  • Preserves all predicate values
  • Partially-isomorphic relative to R iff
  • Exists bijection f U1?U2
  • Preserves values of relational predicates
  • A ? R ? P

42
No LUB over singletons
p1q1 z1/2
p0q1 z0
p1q0 z1
A
p0q1 z1
p1q0 z0
p1q1 z1/2
B
C is an upper bound
D is an upper bound
p1q0 z1/2
p1/2q1 z1/2
p0q1 z1/2
p1q1/2 z1/2
incomparable
Write a Comment
User Comments (0)
About PowerShow.com