Folie%201 - PowerPoint PPT Presentation

About This Presentation
Title:

Folie%201

Description:

Folie 1 – PowerPoint PPT presentation

Number of Views:89
Avg rating:3.0/5.0
Slides: 98
Provided by: rent2
Category:
Tags: folie | fute

less

Transcript and Presenter's Notes

Title: Folie%201


1
Eva Rentschler Universität Mainz
The metal-radical approach
toward magnetic materials
workshop synthetic strategies towards
.... Kaiserslautern, 23.-25.10.2005
2
Toward Molecular Magnets The metal-radical
approach Caneschi, D. Gatteschi, R. Sessoli, P.
Rey, Acc. Chem. Res. 22, 392 (1989).
  • The strategy is simple
  • Strong direct metal-ligand magnetic exchange
    interactions are achieved from the coordination
    of stable free radicals to paramagnetic
    transition-metal ions,
  • and if these interactions are extended in one,
    two, or three spatial directions, cooperative
    magnetic behavior is obtainable in these
    molecule-based systems.

Lemaire, Pure Appl. Chem., Vol. 76, No. 2, pp.
277293, 2004.
3
Toward Molecular Magnets The metal-radical
approach Caneschi, D. Gatteschi, R. Sessoli, P.
Rey, Acc. Chem. Res. 22, 392 (1989).
  • - Since (and prior to) 1989, literally hundreds
    of metal-radical complexes have been reported,
    including a number of magnetically ordered
    materials.
  • A wealth of knowledge about the structure and
    magnetic properties of coordination complexes
    containing stable radical ligands has been
    unearthed, and as a result, the metal-radical
    approach is recognized as one of the more
    fruitful efforts toward molecular magnetic
    materials.

Lemaire, Pure Appl. Chem., Vol. 76, No. 2, pp.
277293, 2004.
4
The families of radicals to be discussed are
limited to stable, isolable free-radical
species i.e., radicals that can be prepared and
stored under ambient conditions.
5
1901 Gomberg triphenylmethyl radical
6
1901 Gomberg triphenylmethyl radical
7
phenalenyl radical
8
phenalenyl radical
  • 2-azaphenalenyl radical
  • 2,5-di- and
  • 2,5,8-triaza derivatives

9
(No Transcript)
10
(No Transcript)
11
stable free radicals
12
Charge Transfer Salts
FeCp2.TCNQ -.
Bis(ethylenedithio)tetrathiafulvalene
FeCp2.TCNE -.
TCNQ 7,7,8,8-tetracyano-p-quinodimethane, TCNE
tetracyanoethene
13
(No Transcript)
14
Nitronyl Nitroxide
15
(No Transcript)
16
(No Transcript)
17
(No Transcript)
18
(No Transcript)
19
purely organic
including metal ions
20
g 2.0119(1), J -143.1(1) cm-1, TIP 2.27
10-4 emu mol-1.
Cu(tfac)2NITMe
21
Typical Values of the Magnetic Coupling Constant
J for Metal-Nitroside
Complexes metal ion type of coupling J,a
cm-1 copper(II)b AF ? 500copper(II)c F -10
to 70nickel(II) AF ? 500 cobalt(II) AF ?
300manganese(II) AF 150-300 a Positive J
means antiferromagnetic coupling. The energy
separation between singlet and triplet is J. b
The nitroxide is an equatorial site. c The
nitroxide in an axial site.
Note H J S1.S2
22
rel. weak interaction between the magnetic
orbitals ? the metal-radical overlap is small,
energyseparation between the two orbitals is
large ? molecular orbitals ?1 and ?2 mainly
localized onmetal and on the radical
fragment,respectively. ? Since (?2-?2)1/2 ? S JAF
? (?2-?2)1/2S JAF is determined by the variation
of the squaredoverlap between the magnetic
orbitals.
J 2k 4?S J ? ?2 J ? S2
23
  • For ? 0, Cu-O-N angle 180, ? ? and dx2-y2
    orbitals ?, irrespective of ? and ?.
  • afm-contribution 0, ? a moderate ferromagnetic
    coupling can be developed.
  • ( the shorter the copper-oxygen distance, the
    larger the coupling.)
  • ? 0 ? ? and ? angles become important.
  • When ? 0, an increase in ? from 0 to 90,
    causes an increase of the overlap.
  • The effect is much more pronounced at ? 90
    than at smaller angles.

24
Structural and Magnetic Parameters for
Diamagnetic Equatorially Coordinated
Copper(I1)-Nitroxide Complexes compd
R ? ? ? (a)
Square-Planar or Square-Pyramidal
Complexes Cu(hfac)2NITPh 1.955 88.4
59.0 56.5 Cu(hfac)2TEMPO 1.920
84.7 56.2 63.7 CuCl2(NITPh)2
1.980 64.1 56.3 67.5 (b)
Trigonal-Pyramidal Complexes Cu(hfac)2NITPh
1.948 80.2 59.8 41.9 Cu(tcact)2TEMP
O 1.942 81.5 56.5
7.0 Cu(tcact)2TEMPO 1.950 85.8 56.2
1.9 Cu(tcact)2PROXYL 1.970 79.4
47.4 75.8 Cu(tcact)2PROXYL 1.961
85.2 54.0 11.7
  • For ? 0, Cu-O-N angle 180, ? ? and dx2-y2
    orbitals ?, irrespective of ? and ?.
  • afm-contribution 0, ? a moderate ferromagnetic
    coupling can be developed.
  • ( the shorter the copper-oxygen distance, the
    larger the coupling.)
  • ? 0 ? ? and ? angles become important.
  • When ? 0, an increase in ? from 0 to 90,
    causes an increase of the overlap.
  • The effect is much more pronounced at ? 90
    than at smaller angles.

25
Geometrical, Magnetic, and Molecular Orbital
Parameters for Mn(hfac)2(radical)2 Complexes
r ? ?
? J S Trans
Adducts M(hfac)2(TEMPO) 2.127(4) 38.6
12.8 25.5 158 4.8 Mn(hfac)2(PROXYL)
2.150 (4) 79.6 34.7 14.0 210
19.7 Mn(hfac)2(NITPh)2 2.144 (5) 77.2
49.5 29.8 180 9.8
2.154 (5) 81.4 47.1 27.9
Cis Adduct Mn(hfac)2 (NITMe)2
2.122 (5) 86.6 52.0 80.7 187
13.2 2.127 (5)
83.0 48.9 7.2
26
bridging Nitronyl Nitroxide radicals
27
non-bridging
?-1,3 bridging
?-1,1 and ?-3,3 bridging
?-1,1 bridging
28
Cambridge Structural Database
non-bridging
?-1,3 bridging
180
40
?-1,1 and ?-3,3 bridging
?-1,1 bridging
-
3
29
non-bridging
180
30
?-1,3 bridging
40
31
  • Cu(hfac)2,(NITEt)
  • vs. T follows the Curie law with C 0.4639
  • S 1/2 with g 2.225.

J1 J2 J2 J1
Cu2------R------Cu1------R------Cu2
  • nitroxide occupies an
  • equatorial position in the coordination
    environment of copper(II)
  • ? strongly coupled ??
  • axial position
  • ? a weak-to-moderate ?? coupling.

32
(No Transcript)
33
(No Transcript)
34
Spin transitions in non-classical systems
head to tail
35
Change in the Jahn-Teller axis of the Cu
bipyramids
36
(No Transcript)
37
1 D
2D / 3D ?
38
charge distribution
39
Cu2(NIT-PhCOO)4(DMSO)2
40
? 0.50 K
? - 0.85 K
41
NIT phenolates as ligands
2D / 3D network
high spin density
42
4-hydroxo phenolates and their metal complexes
43
(No Transcript)
44
magnetic dilution of a nitronyl nitroxide
poly-vinylchloride matrix
microcrystalline film
45
(No Transcript)
46
(No Transcript)
47
(No Transcript)
48
(No Transcript)
49
(No Transcript)
50
  • syntheses of molecular building blocks
  • electronic structures
  • magnetic dilution
  • sign of the magnetic interaction
  • ? construction of polynuclear compounds

51
(No Transcript)
52
Ni2 d8
dx2-y2, dz2
dxy, dxz , dyz
dx2-y2
octahedral coord. with axial CH3OH Ni ( S 1 )
2 NIT (S1/2) Planar quadratic coord. Ni ( S
0 ) (S1)
dz2
dxy dxz , dyz
53
octahedral coord. with axial CH3OH Ni ( S 1 )
2 NIT (S1/2) Planar quadratic coord. Ni ( S
0 ) (S1)
54
(No Transcript)
55
(No Transcript)
56
next generation of nitronyl nitroxide ligands
57
Multifunctional Radicals
58
Chelating Radicals
59
R Me 1 H 2
H. Oshio et a.l. Inorg. Chem. 36, 3014 (1997).
  • 1 Cu(CH3CN)4PF6
  • Cu(1)2 (Td-symm.)
  • NIT-NIT J 55 cm1.

S. Kaizaki. J. Chem. Soc., Dalton Trans. 1566
(2001).
MIICl2(2)2 (M Mn, Co, Ni, Zn)
JM-rad 95 (Ni) and 14.9 cm1 (Co) JMn-rad
23.8 cm 1. Jrad-rad 9 cm 1.
60
Metal-nitronyl nitroxide homoleptic complexes
MII(ClO4)26H2O (MII Ni, Mn, and Zn) ?
M(NITim)3(ClO4)2, M(NITbzim)3(ClO4)2. exhibit
ing strongly antiferromagnetic metal-radical
interactions (-111 lt J lt -53 cm1).
61
coordination polymers
Mn(NITIm)(NITImH)ClO4 Ziessel
Mn2(NITIm)3ClO4
Rey and Luneau
Ferromagnetic ordering temperatures 1.4 K
Mn2(NITIm)3ClO4 40 K Mn2(NITBzIm)3ClO4
62
Chelating Radicals
63
R. Ziessel et al. Inorg. Chem., 37 (20), 5078
-5087, 1998
64
R. Ziessel et al. Inorg. Chem., 37 (20), 5078
-5087, 1998
65
R. Ziessel et al. Inorg. Chem., 37 (20), 5078
-5087, 1998
66
Rare earth coordination compounds
J small usually not direct available from
experiment due to L.S. coupling
For the Ln(III) with 4f1 to 4f5 electronic
config. the Ln-organic radical interaction
?? Conversely, ?? for the configurations 4f7 to
4f10
67
Rare earth coordination compounds
But
For the Ln(III) with 4f1 to 4f5 electronic
config. the Ln-organic radical interaction
?? Conversely, ?? for the configurations 4f7 to
4f10
68
A S 7 Ground Spin-State Cluster Built from
Three Shells of Different Spin Carriers
Ferromagnetically Coupled, Transition-Metal Ions
and Nitroxide Free Radicals
Fe2(CN)12Ni3(IM-2Py)6 2 Fe(CN) 6 3
CN-Ni(IM-2Py)2-NC
2 (S ½) 3 (S 2)
K3Fe(CN)6
Ni(ClO4)2.4H2O IM-2Py ? ?
Fe2(CN)12Ni3(IM-2Py)6
H2O
MeOH
K. E. Vostrikova, D. Luneau, W. Wernsdorfer, P.
Rey, and M. Verdaguer, J. Am. Chem. Soc., 122,
718-719 (2000)
69
A S 7 Ground Spin-State Cluster Built from
Three Shells of Different Spin Carriers
Ferromagnetically Coupled, Transition-Metal Ions
and Nitroxide Free Radicals
1.2 K
K. E. Vostrikova, D. Luneau, W. Wernsdorfer, P.
Rey, and M. Verdaguer, J. Am. Chem. Soc., 122,
718-719 (2000)
70
molecular magnetic nanowires slow relaxation in
chains
R. J. Glauber. J. Math. Phys. 4, 294 (1963). 1D
Ising ferri- or ferromagnetic materialscould
exhibit slow relaxation of their magnetization.
?? favoured by spin correlation along the chains
? reorientation of the magnetization becomes
more difficult The height of the barrier to
magnetization reversal should scale with the
nearest-neighbor exchange coupling. R. Sessoli,
et al. Angew. Chem. Int. Ed. 40, 1760 (2001)
zig-zag / helical
71
molecular magnetic nanowires slow relaxation in
chains
Co(hfac)2(NITPhOMe) 1 D- helix (trigonal
crystallographic symmetry).
  • is highly anisotropic (gCo 7.4) below 50 K
  • and slow magnetization relaxation
  • as well as hysteresis effects are observed.
  • magnetization barrier 154(2) K, (J 220 K).
  • R. Sessoli, et al. Chem. Eur. J. 8, 286 (2002).

molecular magnetic nanowires for information
storage on the molecular level
72
chirality and magnetism in helical 1 D
metal-nitroxide complexes
Quest for new magneto-chiral materials that
could exhibit novel properties that result from
the interaction of chirality and magnetism
Incorporation of an asymmetric center into the
structure of the radical ligand.
Inoue
Solutions exhibit optical activity, and
the low-temperature solid-state magnetic
properties suggest a field-induced transition to
a ferromagnetic state (metamagnetic behavior)
below 5.4 K.
Luneau and Veciana
73
An Enantiopure Molecular Ferromagnet

chiral molecule
chiral ligand
chiral spacegroup P212121
Chirality induced by atomic stereogenic
centers or atropoisomeric conformations
M. Minguet, D. Luneau, E. Lhotel, V. Villar, C.
Paulsen, D. B. Amabilino, J. Veciana,Angew.
Chem., Int. Ed. 41, 586 2002
74
An Enantiopure Molecular Ferromagnet

unusual dynamic behavior at Tc domains with
long-laminar form along easy axis near Tc domain
wall are soft and easily displaced at higher
Temp. domains become more rigid
M. Minguet, D. Luneau, E. Lhotel, V. Villar, C.
Paulsen, D. B. Amabilino, J. Veciana,Angew.
Chem., Int. Ed. 41, 586 2002
75
Verdazyl radicals
structure
SOMO
Lemaire, Hicks
76
The first transition-metal complex of a
Verdazyl radical 1997 by Fox et al.
J intra 271 cm-1, X I J intra 190 cm-1, X
Cl J intra 200 cm-1, X Br J inter negligable
77
Robin Hicks, Martin T. Lemaire Pure Appl. Chem.
76, 277 (2004)
78
Lemaire, Hicks
79
Nickel-verdazyl exchange strongly ferromagnetic
(??) J Ni-vd 240 cm1 Manganes-verdazyl
exchange antferromagnetic (??) J Mn-vd -45 cm
1
Robin Hicks, Martin T. Lemaire Pure Appl. Chem.
76, 277 (2004)
80
Plater et al. J.Chem.Soc., Perkin Trans. 1, 971
(2000)
A series of 4,5-diazafluorene derivatives of
Koelschs free radical Reaction with CuCl2 has
reportedly generated analytically pure
metal-radical complexes, but which have not yet
been structurally or magnetically characterized.
81
Triphenylmethyl-radical
Daniel Maspoch, thesis, Valencia, 2004
82
Zn2
S1/2
S1/2
S0
Cu2
S1/2
S1/2
S1/2
Ni2
S1/2
S1/2
S0
D. Maspoch, D. Ruiz-Molina, K. Wurst, C. Rovira,
J. Veciana
Chemical Communications, 2002, (24), 2958 - 2959
83
An Unusually Stable Trinuclear Manganese(II)
Complex Bearing Bulk Carboxylic Radical Ligands
D. Maspoch, J. Gómez-Segura, N. Domingo, .
Ruiz-Molina, K. Wurst, C. Rovira, J. Tejada, J.
Veciana Inorg. Chem. 44, 6936 (2005)
84
Charge Transfer Salts
FeCp2.TCNQ -.
Bis(ethylenedithio)tetrathiafulvalene
FeCp2.TCNE -.
TCNQ 7,7,8,8-tetracyano-p-quinodimethane, TCNE
tetracyanoethene
85
A.H. Reis, Jr., L.D. Preston, J.M. Williams, S.W.
Peterson, G.A. Candela, L.J. Swartzendruber, J.S.
Miller, J. Am. Chem. Soc. 101 (1979) 2756.
  • Tc 4.8 K FeIII(C5Me5)22TCNE magnet with
  • spins residing in a p-orbital
  • exhibiting magnetic hysteresis
  • (iii) lacks an extended one-, two,- or
    three-dimensional network structure
  • (iv) is soluble in conventional organic solvents
  • (v) does not require metallurgical processing.

86
Variation of Tc with increasing spin number per
metal in MIII(C5Me5)2TCNE-.
87
Tc 16 K
1 D- ferrimagnet
large remanent magnetization and coercice
fields 27 500 Oe at 2K !!!
88
J.M. Manriquez, G.T. Yee, R.S. McLean, A.J.
Epstein, J.S. Miller, Science 252 (1991) 1415.
V(TCNE)x y(CH2Cl2)
J. Zhang, P. Zhou, W.B. Brinckerhoff, A.J.
Epstein, C. Vazquez, R.S. McLean, J.S. Miller,
Am. Chem. Soc. Symp. Ser. 644 (1996) 311.
by reaction of V0(CO)6 with TCNE
V(TCNE)x y(CH2Cl2) (x?2 y ?1/2) is the first
example of an organic-based material with a
critical temperature exceeding room temperature.
89
(No Transcript)
90
spin diverse ligands,
containing two or more different kinds of spin
carriers per molecule,
The semiquinone is stabilized by coordination to
ZnTpCum,Me, where TpCum,Me hydro-tris(3-cumenyl-
5-methylpyrazolyl)-borate The coupling is so
strong, in fact, that these systems may be
treated as single S 1 units.
Nitronyl nitroxide/semiquinone hybrid biradicals
very strong intraligand ferromagnetic exchange
coupling JNN gt 300 and 100 cm1
Shultz et al. J. Am. Chem. Soc. 123, 3133
(2001) J. Am. Chem. Soc. 125, 1607 (2003)
91
Y. Takano, et. al. J. Am. Chem. Soc., 124, 450
(2002)
M(II)(hfac)2(di-(4-pyridyl)phenylcarbene)
92
Y. Takano, et. al. J. Am. Chem. Soc., 124, 450
(2002)
93
Y. Takano, et. al. J. Am. Chem. Soc., 124, 450
(2002)
94
Y. Takano, et. al. J. Am. Chem. Soc., 124, 450
(2002)
exchange pathways
Mn(II) d?-p? d?-p? d?-p? Cu(II) d?-p? d?-p?
95
Di- and triradicals
96
Di- and triradicals
97
Di-radicals and Pressure effects
Write a Comment
User Comments (0)
About PowerShow.com