Recent Carbon Trends and the Global Carbon Budget updated to 2006

About This Presentation
Title:

Recent Carbon Trends and the Global Carbon Budget updated to 2006

Description:

Tropical deforestation. 13 Million hectares each year. Anthropogenic C Emissions: Land Use Change ... Carbon Emissions from Tropical Deforestation. Pg C yr-1 ... – PowerPoint PPT presentation

Number of Views:25
Avg rating:3.0/5.0

less

Transcript and Presenter's Notes

Title: Recent Carbon Trends and the Global Carbon Budget updated to 2006


1
Recent Carbon Trends and the Global Carbon
Budgetupdated to 2006
GCP-Global Carbon Budget team Pep Canadell,
Philippe Ciais, Thomas Conway, Chris Field,
Corinne Le Quéré, Skee Houghton, Gregg Marland,
Mike Raupach, Erik Buitenhuis, Nathan Gillett
Last update 13 June 2008
2
Outline
  • Recent global carbon trends (2000-2006)
  • The perturbation of the global carbon budget
    (1850-2006)
  • The declining efficiency of natural CO2 sinks
  • Attribution of the recent acceleration of
    atmospheric CO2
  • Conclusions and implications for climate change

3
1. Recent global carbon trends
4
Anthropogenic C Emissions Land Use Change
Tropical deforestation 13 Million hectares each
year
Borneo, Courtesy Viktor Boehm
2000-2005
Tropical Americas 0.6 Pg C y-1 Tropical Asia
0.6 Pg C y-1 Tropical Africa 0.3 Pg C y-1
1.5 Pg C y-1
FAO-Global Resources Assessment 2005 Canadell et
al. 2007, PNAS
5
Anthropogenic C Emissions Land Use Change
Carbon Emissions from Tropical Deforestation
1.80
1.60
1.40
1.20
1.00
Pg C yr-1
0.80
0.60
0.40
0.20
0.00
1980
1990
2000
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
Houghton, unpublished
6
Anthropogenic C Emissions Fossil Fuel
2006 Fossil Fuel 8.4 Pg C
2006-Total Anthrop. Emissions8.41.5 9.9 Pg
1990 - 1999 1.3 y-1 2000 - 2006 3.3 y-1
Raupach et al. 2007, PNAS Canadell et al 2007,
PNAS
7
Trajectory of Global Fossil Fuel Emissions
SRES (2000) growth rates in y -1 for
2000-2010 A1B 2.42 A1FI 2.71 A1T
1.63 A2 2.13 B1 1.79 B2 1.61
Raupach et al. 2007, PNAS
8
Trajectory of Global Fossil Fuel Emissions
Raupach et al. 2007, PNAS
9
Carbon Intensity of the Global Economy
Kg Carbon Emitted to Produce 1 of Wealth
Photo CSIRO
Carbon intensity (KgC/US)
1960 1970 1980
1990 2000 2006
Canadell et al. 2007, PNAS
10
Drivers of Anthropogenic Emissions
1.5
1.5
1.5
World
1.4
1.4
1.4
1.3
1.3
1.3
1.2
1.2
1.2
1.1
1.1
1.1
1
1
1
Factor (relative to 1990)
0.9
0.9
0.9
0.8
0.8
0.8
Emissions
F (emissions)
P (population)
0.7
0.7
0.7
g G/P
0.6
0.6
0.6
h F/G
0.5
0.5
0.5
1980
1985
1990
1995
2000
2005
1980
1980
Raupach et al 2007, PNAS
11
Regional Pathways (Kaya identity)
C emissions
Wealth pc
Population
C Intensity
Developed Countries (-)
Developing Countries
Least Developed Countries
Raupach et al 2007, PNAS
12
Anthropogenic C Emissions Regional Contributions
100
D3-Least Developed Countries
80
D2-Developing Countries
60
India
40
China
FSU
20
D1-Developed Countries
Japan
EU
0
USA
Cumulative Emissions 1751-2004
Flux in 2004
Flux Growth in 2004
Population in 2004
Raupach et al. 2007, PNAS
13
Atmospheric CO2 Concentration
Year 2007 Atmospheric CO2 concentration 382.6
ppm 35 above pre-industrial
NOAA 2007 Canadell et al. 2007, PNAS
14
  • 2.
  • The perturbation of the global carbon cycle
    (1850-2006)

15
Perturbation of Global Carbon Budget (1850-2006)
2000-2006
deforestation
Source
tropics
extra-tropics
1.5
CO2 flux (Pg C y-1)
Sink
Time (y)
Le Quéré, unpublished Canadell et al. 2007, PNAS
16
Perturbation of Global Carbon Budget (1850-2006)
2000-2006
fossil fuel emissions
7.6
Source
deforestation
1.5
CO2 flux (Pg C y-1)
Sink
Time (y)
Le Quéré, unpublished Canadell et al. 2007, PNAS
17
Perturbation of Global Carbon Budget (1850-2006)
2000-2006
fossil fuel emissions
7.6
Source
deforestation
1.5
CO2 flux (Pg C y-1)
Sink
Time (y)
Le Quéré, unpublished Canadell et al. 2007, PNAS
18
Perturbation of Global Carbon Budget (1850-2006)
2000-2006
fossil fuel emissions
7.6
Source
deforestation
1.5
CO2 flux (Pg C y-1)
atmospheric CO2
4.1
Sink
Time (y)
Le Quéré, unpublished Canadell et al. 2007, PNAS
19
Perturbation of Global Carbon Budget (1850-2006)
2000-2006
fossil fuel emissions
7.6
Source
deforestation
1.5
CO2 flux (Pg C y-1)
atmospheric CO2
4.1
Sink
ocean
2.2
Time (y)
Le Quéré, unpublished Canadell et al. 2007, PNAS
20
Perturbation of Global Carbon Budget (1850-2006)
2000-2006
fossil fuel emissions
7.6
Source
deforestation
1.5
CO2 flux (Pg C y-1)
atmospheric CO2
4.1
Sink
land
2.8
ocean
2.2
Time (y)
Le Quéré, unpublished Canadell et al. 2007, PNAS
21
Perturbation of the Global Carbon Budget
(1959-2006)
Canadell et al. 2007, PNAS
22
3. The declining efficiency of natural sinks
23
Fate of Anthropogenic CO2 Emissions (2000-2006)
1.5 Pg C y-1
Canadell et al. 2007, PNAS
24
Climate Change at 55 Discount
Natural sinks absorb 5 billions tons of CO2
globally every year, or 55 of all anthropogenic
carbon emissions.
Canadell et al. 2007, PNAS
25
Natural Sinks Large Economic Subsidy
Natural sinks are a huge subsidy to our global
economy worth half a trillion Euros annually if
an equivalent sink had to be created using other
climate mitigation options (based on the cost of
carbon in the EU-ETS).
Canadell Raupach 2008, Science
26
Factors that Influence the Airborne Fraction
  • The rate of CO2 emissions.
  • The rate of CO2 uptake and ultimately the total
    amount of C that can be stored by land and
    oceans
  • Land CO2 fertilization effect, soil respiration,
    N deposition fertilization, forest regrowth,
    woody encroachment,
  • Oceans CO2 solubility (temperature, salinity),,
    ocean currents, stratification, winds, biological
    activity, acidification,

Canadell et al. 2007, Springer Gruber et al.
2004, Island Press
27
Decline in the Efficiency of CO2 Natural Sinks
Fraction of anthropogenic emissions that stay in
the atmosphere
CO2 Emissions in Atmosphere
1960
2000
1980
1970
1990
2006
Canadell et al. 2007, PNAS
28
Efficiency of Natural Sinks
Land Fraction
Ocean Fraction
Canadell et al. 2007, PNAS
29
Causes of the Declined in the Efficiency of the
Ocean Sink
  • Part of the decline is attributed to up to a 30
    decrease in the efficiency of the Southern Ocean
    sink over the last 20 years.
  • This sink removes annually 0.7 Pg of
    anthropogenic carbon.
  • The decline is attributed to the strengthening of
    the winds around Antarctica which enhances
    ventilation of natural carbon-rich deep waters.
  • The strengthening of the winds is attributed to
    global warming and the ozone hole.

Credit N.Metzl, August 2000, oceanographic
cruise OISO-5
Le Quéré et al. 2007, Science
30
Drought Effects on the Mid-Latitude Carbon Sinks
A number of major droughts in mid-latitudes have
contributed to the weakening of the growth rate
of terrestrial carbon sinks in these regions.
Angert et al. 2005, PNAS Buermann et al. 2007,
PNAS Ciais et al. 2005, Science
31
  • 4.
  • Attribution of the recent acceleration of
    atmospheric CO2

32
Attribution of Recent Acceleration of Atmospheric
CO2
1970 1979 1.3 ppm y-1 1980 1989 1.6 ppm
y1 1990 1999 1.5 ppm y-1
  • To
  • Economic growth
  • Carbon intensity
  • Efficiency of natural sinks

2000 - 2006 1.9 ppm y-1
65 - Increased activity of the global economy
17 - Deterioration of the carbon intensity of
the global economy
18 - Decreased efficiency of natural sinks
Canadell et al. 2007, PNAS
33
5. Conclusions and implications for climate
change
34
Conclusions (i)
Since 2000
  • The growth of carbon emissions from fossil fuels
    has tripled compared to the 1990s and is
    exceeding the predictions of the highest IPCC
    emission scenarios.
  • Atmospheric CO2 has grown at 1.9 ppm per year
  • (compared to about 1.5 ppm during the
    previous 30 years)
  • The carbon intensity of the worlds economy has
    stopped decreasing (after 100 years of doing so).

35
Conclusions (ii)
  • The efficiency of natural sinks has decreased by
    10 over the last 50 years (and will continue to
    do so in the future), implying that the longer we
    wait to reduce emissions, the larger the cuts
    needed to stabilize atmospheric CO2.
  • All of these changes characterize a carbon cycle
    that is generating stronger climate forcing and
    sooner than expected.

36
References
  • Angert A, Biraud S, Bonfils C, Henning CC,
    Buermann W, Pinzon J, Tucker CJ, Fung I (2005)
    PNAS 10210823-10827.
  • Breshears DD, Cobb NS, Richd PM, Price KP, Allen
    CD (2005) PNAS 4215144-15148.
  • Canadell JG, Corinne Le Quéré, Michael R.
    Raupach, Christopher B. Field, Erik T. Buitehuis,
    Philippe Ciais, Thomas J. Conway, NP Gillett, RA
    Houghton, Gregg Marland (2007) PNAS.
  • Canadell JG, Pataki D, Gifford R, Houghton RA,
    Lou Y, Raupach MR, Smith P, Steffen W (2007) in
    Terrestrial Ecosystems in a Changing World, eds
    Canadell JG, Pataki D, Pitelka L (IGBP Series.
    Springer-Verlag, Berlin Heidelberg), pp 59-78.
  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée,
    J, V. Allard V, Aubinet M, Buchmann N, Bernhofer
    Ch, Carrara A, et al. (2005) Nature 437529-533.
    Raupach MR, Marland G, Ciais P, Le Quéré C,
    Canadell JG, Klepper G, Field CB, PNAS (2007)
    104 10288-10293.
  • Global Forest Resource Assessment (2005) FAO
    Forestry Paper 147.
  • Gruber N, Friedlingstein P, Field CB, Valentini
    R, Heimann M, Richey JF, Romero P, Schulze E-D,
    Chen A (2004) in Global Carbon Cycle, integrating
    human, climate, and the natural world, Field CB,
    Raupach M (eds). Island Press, Washington, DC.,
    pp 45-76
  • Le Quéré C, Rödenbeck C, Buitenhuis ET, Thomas J,
    Conway TJ, Langenfelds R, Gomez A, Labuschagne
    C, Ramonet M, Nakazawa T, Metzl N, et al. (2007)
    Science 3161735-1738.
  • Canadell JG, Raupach MR (2008) Forest management
    for climate change mitigation. Science 320,
    1456-1457, doi 10.1126/science.1155458.

37
www.globalcarbonproject.org
info_at_globalcarbonproject.org
Write a Comment
User Comments (0)