Improving Marine Ecosystem Models: Use of Data Assimilation and Mesocosm Experiments - PowerPoint PPT Presentation

About This Presentation
Title:

Improving Marine Ecosystem Models: Use of Data Assimilation and Mesocosm Experiments

Description:

Improving Marine Ecosystem Models: Use of Data Assimilation and ... Phyto- and zooplankton counts. DI13C, DO13C, DO15N. Size fractionated d13C and d15N ... – PowerPoint PPT presentation

Number of Views:90
Avg rating:3.0/5.0
Slides: 20
Provided by: josephv8
Learn more at: http://eco37.mbl.edu
Category:

less

Transcript and Presenter's Notes

Title: Improving Marine Ecosystem Models: Use of Data Assimilation and Mesocosm Experiments


1
Improving Marine Ecosystem Models Use of Data
Assimilation and Mesocosm Experiments
Joseph Vallino
ASLO Meeting Santa Fe NM, Feb. 1999 Ecosystems
Center Marine Biological Laboratory, Woods Hole MA
2
(No Transcript)
3
(No Transcript)
4
Mesocosm Experiment
  • Treatments
  • Control Bag A
  • Organic Matter Bag B
  • Daily Nutrients Bag C
  • DOM Nutrients Bag D
  • Additions
  • NO3 (5 mM), PO4 (0.5 mM), Si (7 mM)
  • Leaf litter leachate (300 mM DOC)
  • Samples Taken
  • NO3, NH4, PO4, Si, O2 DIC
  • PAR
  • POC, PON, DOC, DON
  • Chl a
  • PP (14C and O2 incubations)
  • Bacterial No. and productivity
  • Phyto- and zooplankton counts
  • DI13C, DO13C, DO15N
  • Size fractionated d13C and d15N

D
C
B
A
5
Mesocosm Food Web Model
  • Aggregated, coupled C and N model
  • Emphasis on OM processing
  • Holling type II and III growth kinetics
  • State Eqns 10
  • Auto. C, N
  • Osomo. C, N
  • Hetero. C, N
  • Detritus C
  • Detritus N
  • DIN N
  • DOM-L C
  • DOM-L N
  • DOM-R C
  • DOM-R N
  • Parameters
  • 29 Kinetic
  • 10 Initial cond.

6
Data Assimilation Problem
  • State Model
  • Mapping to Observations

e.g., POC(t) A(t) H(t) B(t) DC (t)
  • Objective Function

Measurement error
7
(No Transcript)
8
Optimization Routines Tested
9
Optimization Results
10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
Local and Global Optima
Raw Data
Model
y(x)
L
L
G
a
x
b
Local Optima Solution
Global Optima Solution
y(x)
y(x)
x
x
14
Model Errors
  • Aggregation Error

True Model
True parameter values
P1
P2
Z
Concentration
Time
Approx. Model
Estimated aggregated parameter values
P12 P1 P2
P12
Z
Concentration
N
Time
  • Process Errors
  • Organic matter production and consumption.
  • Constant parameter values, such as CN ratio of
    phytoplankton.
  • Mortality closure scheme.
  • Etc.

15
(No Transcript)
16
(No Transcript)
17
(No Transcript)
18
Conclusions
  • Mesocosms useful for process based modeling
  • However, should separately model bag walls, etc.
  • Optimization Routines
  • Simulated annealing, if computation limits
    permits
  • PRAXIS (no Grad.) or Levenberg-Marquardt (w/
    Grad.) routines
  • Adjoint useful for computationally intense
    problems
  • Integrate model development with experimental
    observations
  • Improve model robustness based on aggregation
    techniques
  • Holistic versus reductionist approach
  • Establish modeling benchmarks

19
Acknowledgements
Chuck Hopkinson Hap Garritt Linda Deegan Ishi
Buffam Anne Giblin Michele Bahr John
Hobbie Jane Tucker
  • Funding - National Science Foundation, LMER and
    LTER programs
  • - Lakian Foundation
  • Manuscript submitted JMR
  • Available at http//eco25.mbl.edu/
Write a Comment
User Comments (0)
About PowerShow.com