Frequency Domain Normal Map Filtering - PowerPoint PPT Presentation

1 / 41
About This Presentation
Title:

Frequency Domain Normal Map Filtering

Description:

Finest-level NDFs are delta functions, so: Use standard linear filtering ... Pat Hanrahan, Shree Nayar, Evgueni Parilov, Makiko Yasui, Denis Zorin, and nVidia. ... – PowerPoint PPT presentation

Number of Views:44
Avg rating:3.0/5.0
Slides: 42
Provided by: charl50
Category:

less

Transcript and Presenter's Notes

Title: Frequency Domain Normal Map Filtering


1
Frequency DomainNormal Map Filtering
  • Charles Han
  • Bo Sun
  • Ravi Ramamoorthi
  • Eitan Grinspun
  • Columbia University

2
Normal Mapping
  • (Blinn 78)

3
Normal Mapping
  • (Blinn 78)
  • Specify surface normals

4
Normal Mapping
5
A Problem
  • Multiple normals per pixel
  • Undersampling
  • Filtering needed

6
Supersampling
  • Correct results
  • Too slow

7
MIP mapping
  • Pre-filter
  • Normals do not interpolate linearly
  • Blurring of details

8
Comparison
supersampled
MIP mapped
9
Representation
10
Previous Work
  • Gaussian Distributions
  • (Olano and North 97)
  • (Schilling 97)
  • (Toksvig 05)
  • Mixture Models
  • (Fournier 92)
  • (Tan, et.al. 05)
  • 3D Gaussian
  • 2D covariance matrix
  • 1D Gaussian
  • mixture of Phong lobes
  • mixture of 2D Gaussians

11
Our Contributions
  • Theoretical Framework
  • Normal Distribution Function (NDF)
  • Linear averaging for filtering
  • Convolution for rendering
  • Unifies previous works
  • New normal map representations
  • Spherical harmonics
  • von Mises-Fisher Distribution
  • Simple, efficient rendering algorithms

12
Normal Distribution Function (NDF)
  • Describes normals within region
  • Defined on the unit sphere
  • Integrates to one
  • Extended Gaussian Image (Horn 84)

13
Normal Distribution Function
normal map
NDF
14
Normal Distribution Function
normal map
NDF
15
Normal Distribution Function
normal map
NDF
16
Normal Distribution Function
normal map
NDF
17
NDF Filtering
normal map
18
NDF Filtering
normal map
19
NDF Filtering
  • NDF averaging is linear
  • Store NDFs in MIP map

20
Rendering
  • Radially symmetric BRDFs
  • Lambertian
  • Blinn-Phong
  • Torrance-Sparrow
  • Factored

rendered image
21
Supersampling
supersampled image
Effective BRDF
22
Effective BRDF
23
Spherical Convolution
  • Form studied in lighting
  • (Basri and Jacobs 01)
  • (Ramamoorthi and Hanrahan 01)
  • Effective BRDF convolution of NDF BRDF

24
Spherical Convolution
BRDF
NDF
Effective BRDF
25
Previous Work
  • Gaussian Distributions
  • Olano and North (97)
  • Schilling (97)
  • Toksvig (05)
  • Mixture Models
  • Fournier (92)
  • Tan, et.al. (05)
  • Our Work

3D Gaussian 2D covariance matrix 1D
Gaussian mixture of Phong lobes mixture of 2D
Gaussians
spherical harmonics von Mises-Fisher mixtures
26
Spherical Harmonics
  • Analogous to Fourier basis
  • Convolution formula

27
BRDF Coefficients
  • Arbitrary BRDFs
  • Cheaply represented
  • Analytic compute in shader
  • Measured store on GPU
  • Easily changed at runtime

28
NDF Coefficients
  • Store in MIP mapped textures
  • Finest-level NDFs are delta functions, so
  • Use standard linear filtering

29
Effective BRDF Coefficients
  • Product of NDF, BRDF coefficients
  • Proceed as usual

30
(No Transcript)
31
Limitations
  • Storage cost of NDF
  • One texture per coefficient
  • O( ) cost
  • Limited to low frequencies

32
von Mises-Fisher Distribution (vMF)
  • Spherical analogue to Gaussian
  • Desirable properties
  • Spherical domain
  • Distribution function
  • Radially symmetric

33
Mixtures of vMFs
NDF
number of vMFs
34
Expectation Maximization (EM)
  • From machine learning
  • Used in (Tan et.al. 05)
  • Fit model parameters to data

EM
35
Rendering
  • Convolution
  • Spherical harmonic coefficients
  • Analytic convolution formula
  • Extensions to EM
  • Aligned lobes (Tan et.al. 05)
  • Colored lobes

36
(No Transcript)
37
(No Transcript)
38
(No Transcript)
39
(No Transcript)
40
Conclusion
  • Summary
  • Theoretical Framework
  • New NDF representations
  • Practical rendering algorithms
  • Future directions
  • Offline rendering, PRT
  • Further applications for vMFs
  • Shadows, parallax, inter-reflections, etc.

41
Thanks!
  • Tony Jebara, Aner Ben-Artzi, Peter Belhumeur,
  • Pat Hanrahan, Shree Nayar, Evgueni Parilov,
  • Makiko Yasui, Denis Zorin, and nVidia.

http//www.cs.columbia.edu/cg/normalmap
Write a Comment
User Comments (0)
About PowerShow.com