Breathing is not enough - PowerPoint PPT Presentation

1 / 51
About This Presentation
Title:

Breathing is not enough

Description:

Sequence-specific because amino acid side chains H-bond with ... dihedral. pseudorotation. helicoidal. 10- to 100-fold less variables. R. Lavery et al. Comput. ... – PowerPoint PPT presentation

Number of Views:70
Avg rating:3.0/5.0
Slides: 52
Provided by: Kry66
Category:

less

Transcript and Presenter's Notes

Title: Breathing is not enough


1
Breathing is not enough
Krystyna Zakrzewska Laboratoire de Biochimie
Théorique, UPR 9080 Institut de Biologie
Physico-Chimique 13, rue P. et M. Curie, 75005
Paris krystyna_at_ibpc.fr,
2
Institut de Biologie Physico-Chimique
3
The Central Dogma of molecular biology
4
Transcription
5
Transcription
6
Transcription initiation complex
3
7
DNA protein recognition
8
Recognition pattern in the grooves
9
Direct recognition
Sequence-specific because amino acid side chains
H-bond with DNA base pairs in major
groove. Structural basis well understood.
But
10
Double helix ?
Dickerson dodecamer CGCGAATTCGCG
11
DNA bending by transcription factors
12
Examples of bent complexes
CAP
TBP
IHF
13
Indirect recognition
Protein recognizes DNA structure Minor groove
features Role of water molecules DNA
flexibility May be sequence specific Sequence
determines structure
14
DNA bending
15
Alex Rich asymmetric neutralisation
Mirzabekov and Rich PNAS 76, 1979, 1118
16
Jim Maher bending by neutralisation
Strauss and Maher, Science 266, 1994, 1829
17
Distribution of Hydrogen Bond Types in
DNA-Protein ComplexesMandel-Gutfeund et al,
J.Mol.Biol.,1995
18
Modifying Charges of GCN4
19
Catabolite Activator Protein (CAP) DNA Complex
20
Methodology
  • All-atom representation
  • Internal/helicoidal variables (JUMNA)
  • AMBER force field
  • Continuum solvent e(r), GB
  • Normal mode analysis (LIGAND)

21
Force field used
22
CAP phosphate neutralisation pattern
23
CAP binding
24
Phosphate Neutralisation Study
25
DNA oligomers from the complexes studied
Red dots salt bridges Green dots negative
contacts
26
DNA bending in protein DNA complexes-conclusion
27
Molecular dynamics simulations
28
Molecular dynamics
Time integration of Newton's equation of
motion F ma -dE/dr m dr2/dt2 Taylor
expansion r(t dt) r(t) dt dr(t)/dt dt2/2
d2r(t)/dt2 Fastest movements O(10-15 s)
r
29
Periodic boundary conditions
30
Equilibration
Temp (K)
Time (ns)
31
MD snapshots
32
MD time series- sugar phase- groove width
33
Hha1 methyltransferaseKlimaauskas et al. Cell
76 (1994) 357
34
Enzymatic base chemistry
35
Base opening lifetimes
36
Minor groove ?? Major groove
37
Ion analysis and problems
38
Simulation protocol
  • 50 ns simulation time
  • CCATGCGCTGAC dodecamer,
  • the target sequence for HhaI
  • cytosine-methyltransferase
  • AMBER 6/7, Parm99
  • 22 Na ions, 22 K ions
  • 5000 TIP3P H2O
  • PME
  • Integration time 2fs, SHAKE

39
Most frequently visited zones
K
Na
40
Tight ion binding
Na
K
C C A T G C G
C T G A C G G T A
C G C G A C T
G 1 2 3 4 5 6
7 8 9 10 11 12
41
Mtf binding site twistNa-red, K blue
deg
C C A T G C G C T G A C
42
Mtf binding site twist_8Na-red, K blue
deg
time (ns)
43
Backbone torsion angles
44
ag transition
a
g
45
a/g transitions in Na dynamics
red g green-a
46
Correlation of a/g to Na binding to phosphates
red g green-g
47
Acknowledgements
Emmanuel Giudice Raphaël Gurlie Tap Ha
Duong Richard Lavery Péter Varnai
48
Recent experimental data
Stacked-Unstacked Equilibrium at the Nick Site of
DNA E. Protozanova, P. Yakovchuk M.D.
Frank-Kamenetskii, JMB to be published
DG stack(5-3) (kcal/mole) TA -0.19 AT
-1.34 TT -1.11 TC -1.43 TG -0.55
GT -1.81 CC -1.44 CT -1.03 CG
-0.91 GC -2.17
DGHB (kcal/mole) AT 0.07 GC -0.60
49
Cells are crowded
50
Biological time scale
Bond vibrations 1 fs (10-15 s) Sugar
repuckering 1 ps (10-12 s) DNA bending 1
ns (10-9 s) Domain movement 1 ?s (10-6 s) Base
pair opening 1 ms (10-3 s) Transcription 2.5 ms
/ nucleotide Protein synthesis 6.5 ms / amino
acid Protein folding 10 s RNA lifetime 300 s
51
JUMNA JUnction Minimization of Nucleic Acids
dihedral pseudorotation helicoidal
10- to 100-fold less variables
R. Lavery et al. Comput. Phys. Comm. 91 (1995)
135-158
Write a Comment
User Comments (0)
About PowerShow.com