The energy issue and the possible contribution of various nuclear energy production scenarios part I - PowerPoint PPT Presentation

1 / 51
About This Presentation
Title:

The energy issue and the possible contribution of various nuclear energy production scenarios part I

Description:

The energy issue and the possible contribution of various ... B: Middle of the road. C: Low energy intensity. High electricity. C1: Ren. Gaz. C2: Ren. Nuclear ... – PowerPoint PPT presentation

Number of Views:61
Avg rating:3.0/5.0
Slides: 52
Provided by: NIF
Category:

less

Transcript and Presenter's Notes

Title: The energy issue and the possible contribution of various nuclear energy production scenarios part I


1
The energy issue and the possible contribution of
various nuclear energy production scenariospart
II
H.Nifenecker Scientific consultant
LPSC/CNRS Chairman of  Sauvons le Climat 
2
(No Transcript)
3
IPCC projections
2030 tCO2lt50/ton Renewables 35
electricity Nuclear 18 electricity
4
IEAs successive Prospects fo Nuclear (World
Energy Outlook)
2020 2030 Mtoe TWh Mtoe TWh WEO
1998 604 2317 8 WEO 2000 617 2369 9 WEO
2002 719 2758 11 703 2697 9 WEO
2004 776 2975 12 764 2929 9 WEO
2006 861 3304 10 Alt. 2006
1070 4106 14
5
Prospect for nuclear production 2000-2030 TWh
(AIEA July 2006)
1400
1200
1000
2000
2010 b
800
2010 H
2020 b
600
2020 H
2030 b
2030 H
400
200
0
Am L Eur E
MOAs S Ext. O
Am N
W Eur
Afr
Pacif
6
(No Transcript)
7
Nuclear Intensive Scenarios
  • Scenarios by difference
  • P.A.Bauquis
  • D.Heuer and E.Merle
  • Objective oriented Scenarios
  • H.Nifenecker et al.

8
No miracle from renewables
  • Hydro
  • Limitation of ressource (Europe-USA)
  • Environment and localization (Am.Sud, Asie,
    Afrique, Russie)
  • Large Investments
  • Reliable, available
  • Might provide 20 of world electricity.
  • France 70TWh/450
  • Wind
  •  fatal  Energy
  • Limit 10-15 of electricity production

9
No miracle with renewables
  • Solar
  • PV Ideal for isolated sites (Africa, SE Asia).
    Mostly artificial in Developed Countries and very
    expansive
  • Thermal interesting for heating and warm water
  • Thermodynamic Fiability? Hot and dry climates
    Hot and dry climate.
  • Biomass
  • Bio-fuels (10 Mtep/50)
  • Wood energy.
  • Competition with food, energy and environmental
    balance

10
(No Transcript)
11
Pierre René Bauquis
12
Renewable energies
13
Renewable electricity
14
A vision of energy mix by 2050
15
Energy mix in 2050
16
CO2 emissions
17
Nuclear production
In Bauquis Scenario Nuclear production 0.6 Gtep
4 Gtep i.e. x 6.5
18
(No Transcript)
19
Elsa Merle and Daniel Heuer
Hypothesis 2050
  • Stabilization of fossile contribution
  • World energy consumption x 2
  • Renewable nuclear
  • Multiplication by factor 8
  • Then increase by 1.2/year up to 2100

Nuclear
20
(No Transcript)
21
Objective oriented scenariosH.Nifenecker et al.
22
2000 IIASA-WEC Scenarios
  • A strong growth
  • A1 Oil
  • A2 Coal
  • A3Gaz
  • B Middle of the road
  • C Low energy intensity. High electricity
  • C1 Ren.Gaz
  • C2 Ren.Nuclear

23
GDP/cap
24
Energy intensities
25
World GDP
B2 110 000
26
Primary energy per fuel
27
Exhaustion of fossile reserves
Exhaustion of fossile reserves (Gtoe)
28
2030-2050
2030
  • Minimize use of fossils for Electricity
  •  Reasonable  Development of Nuclear
  • OECD 85
  • Transition 50
  • China, India, Latin America 30

3000 GWe Nuclear
2050
  • Minimize use of coal and gas
  • 30 coal China, India 30 gas Russia 100
    Africa
  • 7500 GWe Nucléaire

29
Scenario no coal no gaz in 2050
B218000, Nuclear1450
30
CO2/GDP
31
CO2/primen
32
Gestion of Natural Uranium Reserves
33
Unat exhaustion
34
Breeding Cycles
35
U-Pu vs Th-U
U-Pu versus Th-U cycles
  • U-Pu
  • Fast Spectra
  • Pu fuel
  • 1.2 GWe reactors
  • Solid fuels
  • 1 year cooling
  • 25 years doubling time
  • Th-U
  • Thermal Spectra
  • Pu, then 233U fuel
  • 1 GWe reactors
  • Molten Salts fuel
  • 10 days fuel cycling
  • 25 years doubling time

36
Nb GWe
37
Pu inventory
38
Nb GWe Th-U
39
U3 inventory
40
Trajectory
41
Stabilisation T
  • Stabilization of CO2 concentration to 450 ppm
  • Stabilization of temperature

42
(No Transcript)
43
E.Merle, D.HeuerAlternative3 components
44
Reactor types
45
3 components
  • 233U production
  • 450 PWR and 300 FNR
  • Les RNR ferment le cycle U/Pu
  • natU consumption
  • 7 million tons by 2100
  • 10 times less fissile matter in fuel cycle
  • Minor actinides production minimized

46
(No Transcript)
47
R and D needsstandard reactors
  • PWR reactors
  • Selective reprocessing extraction of Cs, Sr and
    M.A.
  • Th-Pu MOx fuel in order to produce U233
  • Candu type reactors
  • Use of Th-Pu and, then Th-U3 fuel
  • Reprocssing of Th-U3 fuel
  • Optimization of fuel regeneration

48
R and D needsfast neutron reactors
  • Sodium cooled
  • Void coefficient
  • Core Recompaction
  • Th blanket
  • Reprocessing of Th blanket
  • Lead cooled reactors
  • Corrosion problems
  • Pb-Bi alloys
  • Molten salt cooled reactors
  • Chemical composition
  • Corrosion
  • Gas cooled reactors
  • Reprocessing of refractory fuels

49
R and D needsmolten salt reactors
  • Neutron spectrum optimization
  • Corrosion
  • Fuel reprocessing

50
Proliferation
  • Political or technical question?

51
References
  • http//www.iiasa.ac.au/web-apps/ggi/
  • GgiDb/dsd?Actionhtmlpagepageseries
  • Scenarios with an Intensive Contribution of
    Nuclear Energy
  • to the World Energy Supply
  • H.Nifenecker et al. Published in IEJE 1999
  • Scenarios for a Worldwide Deployment of Nuclear
  • Energy Production
  • E. Merle-Lucotte1, D. Heuer, C. Le Brun J-M.
    Loiseaux
  • Note LPSC 05-73
  • LEnergie de demain techniques,
    environnement,économie,
  • J.L.Bobin, E.Huffer, H.Nifenecker, EDP Sciences
    2005, p.81-111
  • Accelerator Driven Subcritical Reactors,
    H.Nifenecker, S.David,
  • O.Méplan, IOP 2004
Write a Comment
User Comments (0)
About PowerShow.com