Inertial Measurement Units (IMUs) - PowerPoint PPT Presentation

About This Presentation
Title:

Inertial Measurement Units (IMUs)

Description:

(IMUs) Theory and Practice H.J. Sommer III, Ph.D. The Pennsylvania State University University Park, PA 16802 hjs1_at_psu.edu www.mne.psu.edu/sommer – PowerPoint PPT presentation

Number of Views:1390
Avg rating:3.0/5.0
Slides: 61
Provided by: HJS68
Learn more at: https://www.me.psu.edu
Category:

less

Transcript and Presenter's Notes

Title: Inertial Measurement Units (IMUs)


1
Inertial Measurement Units(IMUs) Theory and
Practice
H.J. Sommer III, Ph.D. The Pennsylvania State
University University Park, PA 16802 hjs1_at_psu.edu
www.mne.psu.edu/sommer
2
Inertial Measurement Unit ?
  • Kinematic measurements using inertial references
  • Attitude and magnetic heading
  • Angular velocity
  • Acceleration
  • Fuse data to provide more reliable results

3
Inertial Measurement Unit ?
14x28 mm
4
Inertial Measurement Unit ?
5
Inertial Measurement Unit ?
6
Inertial Measurement Unit ?
7
Inertial Measurement Unit ?
8
Traditional KinematicMeasurements
  • Photogrammetry
  • Absolute location of point markers
  • Goniometry
  • Relative angles across body segments
  • Electromagnetic digitizers
  • 6DOF of discrete sensors

9
Photogrammetry
10
Photogrammetry Quiz(for Oldtimers)
  • Vanguard or RightGuard?
  • DLT or BLT?
  • Lo-Cam or Hi-Cam?

11
Photogrammetry
  • Positive
  • Absolute location and attitude of body segments
  • Multiple IR cameras with ambient lighting
  • Automatic marker tracking
  • No cables to subject
  • gt 100 Hz, high resolution
  • Markerless motion capture (MMC)

12
Photogrammetry
  • Negative
  • Calibration relative to anatomy (joints and mass
    centers)
  • Requires finite differences for velocity and
    acceleration
  • Marker occlusion
  • Soft tissue artifact
  • Limited workspace in a gait lab

13
Goniometry
14
Goniometry
  • Positive
  • Direct measurement of joint motion
  • Easy to use
  • Negative
  • Does not measure absolute position/attitude
  • Physical attachment to subject

15
Electromagnetic Digitizers
16
Electromagnetic Digitizers
  • Positive
  • 6 DOF for each body segment
  • Negative
  • Limited workspace
  • Cables (new wireless)
  • Physical attachment to subject
  • Accuracy degraded by speed

17
IMUs
Integrated Kinematic Sensor (IKS) Wu and Ladin,
1993
18
IMUs
  • Attitude relative to gravity vector
  • Magnetic heading
  • Rotational velocity
  • Translational acceleration

19
IMUs
  • Positive
  • Absolute attitude of body segments
  • Direct measurement of angular velocity
  • Direct measurement of acceleration
  • No marker occlusion
  • Large work space in unstructured environment

20
IMUs
  • Negative
  • Does not provide absolute location, translational
    velocity or rotational acceleration
  • Calibration relative to anatomy
  • Soft tissue artifact
  • Data communication
  • lt 100 Hz, medium resolution

21
History of IMUs
  • Vehicle navigation
  • Intercontinental ballistic missiles (ICBM)
  • Nuclear submarines
  • Cruise missiles
  • MicroElectroMechanical Systems (MEMS)
  • Automotive
  • Consumer products

22
MEMS IMUs - Automotive
  • Automotive
  • Accelerometers to deploy airbags
  • Vehicle roll handling

23
MEMS IMUs Consumer Products
  • Games (WiiMote)
  • PDA (iPhone)
  • Camera stabilization
  • Hard disks

24
MEMS Fabrication
25
MEMS Comb Sensor/Drive
26
MEMS accelerometer(proof mass)
gravity
acceleration
27
MEMS accelerometer
28
MEMS gyro (tuning fork)
29
MEMS magnetometer (magnetoresistive)
30
MEMS IMU Outputs
  • Signal
  • Analog voltage (0 to 3V)
  • Fixed frequency, variable duty cycle
  • Digital (internal A/D converter)
  • Bandwidth
  • lt 150 Hz

31
Two-Dimensional (2D) IMU
  • Biaxial accelerometer
  • Uniaxial gyro

32
Three-Dimensional (3D) IMU
  • Triaxial accelerometer
  • Triaxial gyro
  • Triaxial magnetometer
  • Required to determine spin about gravity vector

33
MEMS 9DOF IMU
  • Triaxial accelerometer
  • 3g, 300 mV/g, 550 Hz
  • Triaxial gyro
  • 300 deg/sec (dps), 3.3mV/dps, 140 Hz
  • Triaxial magnetometer
  • 50 Hz
  • On-board CPU, serial I/O

34
Break Time
Stand up Stretch Say hello to your neighbor
35
Data Fusion
  • Sensor uncertainty
  • Geometric
  • Rigid body
  • Articulated model
  • State space
  • Kalman filter

36
Sensor Uncertainty
  • s measured signal
  • b zero drift or bias (function of temp)
  • f scale factor (function of temp)
  • w Gaussian white noise
  • s2 variance

37
LSY530 gyro 300 degps
  • Nonlinearity 1
  • b 1.23 V, 0.05 degps/C
  • f 300 degps/V, 0.05 /C
  • s 0.035 degps/sqrt(Hz) pink noise

38
Rigid Body Fusion
  • Multiple IMUs per body
  • Parallel axes
  • Rejects gravity effects

39
Articulated Model - Pendulum
40
Multiple Segment Model
41
Kalman Filter
  • Uses state space model
  • Position
  • Velocity
  • Adaptive time domain filter
  • Combines states
  • Tracks variance-covariance
  • Rejects zero drift

42
Kalman Filter - 2D IMU
43
Kalman Filter - Simplified
44
Kalman Filter Prediction
probability
q latitude
45
Kalman Filter - Measurement
probability
q latitude
46
Kalman Filter - Correction
probability
q latitude
47
Kalman Filter - Prediction
probability
constant speed fixed time
q latitude
48
Kalman Filter 2D IMU
probability
q angle
49
Kalman Filter - Extended
  • State space
  • Include acceleration
  • Nonlinear state relationships
  • ax-ay-qdot versus q-qdot
  • Include geometric multisegment model
  • Include states for multiple bodies

50
Kalman Filter
51
Kalman Filter
52
Applications
  • Stationary
  • Simple attitude
  • Simple motion
  • Coordinated movement
  • Inverse dynamics

53
Stationary
  • Minimal change in sensor orientation
  • Hand/arm tremor
  • Extended arm, tracing spiral
  • Triaxial accelerometer, gt150 Hz
  • Postural sway
  • Supracranial accelerometer
  • Lumbar accelerometer

54
Simple Attitude
  • Body position during sleep
  • Treatment for sleep apnea
  • Triaxial accelerometer, very low sample rate
  • Not interested in spin about gravity vector
  • Restless Leg Syndrome (RLS)
  • Monitor sudden movement
  • High frequency sample rate
  • Interested in event itself, not characterization

55
Simple Motion
  • Planar lifting or reaching
  • Simple articulated model
  • 2D IMU provides position, velocity, acceleration
  • Passive manipulation or drop
  • Assess spasticity
  • Compute jerk from acceleration

56
Coordinated Movement
  • Basic assessment
  • Triaxial accelerometer, gt100 Hz
  • Number of strides, timing
  • Asymmetry of motion
  • Rehabilitation, prosthetic fitting
  • Full body motion
  • Thirteen 9DOF IMUs
  • Multiple segment model

57
Inverse Dynamics
  • 2D
  • Lower data throughput (3ch versus 9ch)
  • Require sagittal and frontal IMUs
  • Does not require magnetometers
  • 3D
  • Lifting or reaching most promising
  • Difficulty in assessing absolute location of feet

58
Practical Considerations
  • Motion variables
  • Consider alternate signals to describe motion
  • Number of IMUs
  • May require two per segment
  • Synchronization
  • In-shoe pressure transducers

59
Data Transfer
  • Umbilical with local A/D
  • Belt-pack data logger
  • SD card
  • Belt-pack wireless
  • Bluetooth, longer battery life
  • Network wireless
  • Dropouts, battery life

60
Commercial Systems
  • Xsens MVN
  • Biosyn FAB
  • NexGen Ergonomics
  • Microstrain wireless
  • MEMSense
  • Sparkfun WiTilt
  • Nintendo WiiMote
Write a Comment
User Comments (0)
About PowerShow.com