Sensoren und Akt[uat]oren Vorlesungen und Labor Ingenieurswesen-Abteilung - FILS (3-ten Semester) Studienplan: 14 x 1 = 14 Stunden Vorlesung 14 x2 = 28 Stunden Labor - LabVIEW - PowerPoint PPT Presentation

1 / 27
About This Presentation
Title:

Sensoren und Akt[uat]oren Vorlesungen und Labor Ingenieurswesen-Abteilung - FILS (3-ten Semester) Studienplan: 14 x 1 = 14 Stunden Vorlesung 14 x2 = 28 Stunden Labor - LabVIEW

Description:

Sensoren und Akt[uat]oren Vorlesungen und Labor Ingenieurswesen-Abteilung - FILS (3-ten Semester) Studienplan: 14 x 1 = 14 Stunden Vorlesung 14 x2 = 28 Stunden Labor ... – PowerPoint PPT presentation

Number of Views:210
Avg rating:3.0/5.0
Slides: 28
Provided by: Miha96
Category:

less

Transcript and Presenter's Notes

Title: Sensoren und Akt[uat]oren Vorlesungen und Labor Ingenieurswesen-Abteilung - FILS (3-ten Semester) Studienplan: 14 x 1 = 14 Stunden Vorlesung 14 x2 = 28 Stunden Labor - LabVIEW


1
Sensoren und Aktuatoren Vorlesungen und Labor
Ingenieurswesen-Abteilung - FILS(3-ten
Semester)Studienplan14 x 1 14 Stunden
Vorlesung 14 x2 28 Stunden Labor - LabVIEW
2
Stoffplan1. Einleitung. Elektrische Messung
nichtelektrischer Größen.2. Meßfühler. Übersicht
über passive und aktive Aufnehmer-Prinzipien.
Messchaltungen.3. Sensoren für geometrische
Meßgrößen und mechanische Beanspruchung,
4. Temperaturmessung 5. Intelligente
Sensorsysteme 6. Aktoren 7. Typische
Sensoren und Aktoren der Robotik 8.
Feldbussysteme
3
  • Aktuatoren
  • .Bauelemente für die Signalverabeitung mit
    pneumatischer Hilfsenergie
  • analoge pneumatische Signalverarbeitung
  • pneumatische Schaltelemente
  • elektrisch-pneumatische Umformer
  • .Elektronische Steuerungen
  • .Bauelemente für die Signalverabeitung mit
    hydraulischer Hilfsenergie
  • Hydraulische Signal- und Leistungverstärker
  • elektrohydraulische Umformer
  • Stellglieder mit Drehbewegung
  • .Stelleinrichtungen
  • Stelleinrichtungen für Stoffströme
  • Stellglieder mit Hubbewegung
  • Stellglieder mit Drehbewegung
  • . Stellantriebe
  • Stellantriebe mit elektrischer Hilfsenergie
  • Stellantriebe mit pneumatischer Hilfsenergie
  • Stellantriebe mit hydraulischer Hilfsenergie
  • Schaltgeräte elektromechanische-,
    elektromagnetische Relais

4
Aktuatoren Stellantriebe mit elektrischer
Hilfsenergie - Servomotoren Servomotors are
available as AC or DC motors. Today a class of
motors is designed for applications that may use
a servo amplifier or a variable-frequency
controller, which means that a motor may be used
in a servo system in one application, and used in
a variable-frequency drive in another
application. Some companies also call any
closed-loop system that does not use a stepper
motor a servo system, so it is possible for a
simple AC induction motor that is connected to a
velocity controller to be called a servomotor.
Some changes that must be made to any motor
that is designed as a servomotor includes the
ability to operate at a range of speeds without
overheating, the ability to operate at zero speed
and retain sufficient torque to hold a load in
position, and the ability to operate at very low
speeds for long periods of time without
overheating. One of the most usable types of
motors in servo systems is the permanent magnet
(PM) type motor. The voltage for the field
winding of the permanent magnet type motor can be
AC voltage or DC voltage. This type of PM motor
also has an encoder or resolver built into the
motor housing. This ensures that the device will
accurately indicate the position or velocity of
the motor shaft.
nach Thomas E. Kissell Industrial Electronics,
Prentice Hall 2000
5
Aktuatoren Stellantriebe mit elektrischer
Hilfsenergie - Servomotoren
Typical PM servomotors.
nach Thomas E. Kissell Industrial Electronics,
Prentice Hall 2000
6
Aktuatoren Stellantriebe mit elektrischer
Hilfsenergie Brushless Servomotoren The
brushless servomotor is designed to operate
without brushes. This means that the commutation
that the brushes provided must now be provided
electronically. Electronic commutation is
provided by switching transistors on and off at
appropriate times. The main point about the
brushless servomo-tor is that it can be powered
by either ac voltage or dc voltage. Next figure
shows three types of voltage waveforms that can
be used to power the brushless servomotor.
Figure a shows a trapezoidal voltage input and a
square wave current input. Figure b shows a
sinusoidal waveform for the input voltage and a
square wave current waveform. Figure c shows a
sinusoidal input waveform and a sinusoidal
current waveform. The sinusoidal input and
sinusoidal current waveform are the most popular
voltage supplies for the brushless servomotor.
nach Thomas E. Kissell Industrial Electronics,
Prentice Hall 2000
7
Aktuatoren Stellantriebe mit elektrischer
Hilfsenergie Brushless Servomotoren
(a) Trapezoidal input voltage and square wave
current waveforms. (b) Sinusoidal input voltage
and sinusoidal voltage and square wave output
voltage waveforms. (c) Sinusoidal input voltage
and sinusoidal current waveforms. This has become
the most popular type of brushless servomotor
control.
nach Thomas E. Kissell Industrial Electronics,
Prentice Hall 2000
8
Aktuatoren Stellantriebe mit elektrischer
Hilfsenergie Brushless Servomotoren
(a) Transistors connected to the three windings
of the brushless servomotor. (b) Waveforms of
the three separate voltages that are used to
power the three motor windings. (c) Waveforms of
the signals used to control the transistor
sequence that provides the waveforms for the
previous diagram, (d) Waveform of the overall
back EMF.
nach Thomas E. Kissell Industrial Electronics,
Prentice Hall 2000
9
Aktuatoren Stellantriebe mit elektrischer
Hilfsenergie Schrittmotoren
Wortschatz Schrittmotor Gleichstrommotor,
Rotor (drehbares Motorteil mit der Welle)
Drehwinkel, Reluktanz- und Permanentmagnetmotor,
Hybridschrittmotor Anzahl der Pole
Auflösung High-Torque Motoren (hohes
Drehmoment) Kraftdichte überlastet
Positionsrückmeldung (Encoder, Drehgeber)
Synchronmotor Servomotoren Linearmotoren.
Schrittmotoren mit Getriebe.
nach Douglas W. Jones, THE UNIVERSITY OF IOWA
Department of Computer Science
10
Aktuatoren Stellantriebe mit elektrischer
Hilfsenergie Schrittmotoren
Prinzip der Schrittmotoren Schrittmotoren
arbeiten völlig anders als Gleichstrommotoren.
Das ist schon daran zu erkennen, dass diese keine
zwei, sondern meist 4, 6 oder 8 Anschlüsse
(bipolare oder unipolare Motoren) besitzen. m
den Motor nun in Bewegung zu bringen, muss an den
Spulen eine Spannung angelegt werden. Legt man
die Mittelanzapfung auf Masse, so hat man also
noch 4 Anschlüsse. Legt man nun an zwei dieser
Anschlüsse die Spannung an, bewegt sich der Motor
- allerdings nur einen winzigen kaum sichtbaren
Schritt. Wie groß ein Schritt ist, hängt vom
jeweiligen Motor ab. Bei den meisten Motoren
beträgt der Schrittwinkel 1,8 Grad. Nachdem der
Motor nun einen Schritt gemacht hat, muss die
Spannung an einer anderen Kombination von
Anschlüssen eingeschaltet werden. Es gibt somit 4
Kombinationen, wobei immer zwei Anschlüsse an die
Spannung und zwei andere auf 0 V gelegt werden.
Dies ist die sogenannte unipolare Ansteuerung.
Wechselt man ständig diese verschiedenen
Anschlussbelegungen, so würde sich der Motor mit
jeder Änderung einen Schritt drehen.
nach Douglas W. Jones, THE UNIVERSITY OF IOWA
Department of Computer Science
11
Aktuatoren Stellantriebe mit elektrischer
Hilfsenergie Schrittmotoren
Stepping motors can be viewed as electric motors
without commutators. Typically, all windings in
the motor are part of the stator, and the rotor
is either a permanent magnet or, in the case of
variable reluctance motors, a toothed block of
some magnetically soft material. All of the
commutation must be handled externally by the
motor controller, and typically, the motors and
controllers are designed so that the motor may be
held in any fixed position as well as being
rotated one way or the other. Most steppers, as
they are also known, can be stepped at audio
frequencies, allowing them to spin quite quickly,
and with an appropriate controller, they may be
started and stopped "on a dime" at controlled
orientations. For some applications, there is a
choice between using servomotors and stepping
motors. Both types of motors offer similar
opportunities for precise positioning, but they
differ in a number of ways. Servomotors require
analog feedback control systems of some type.
Typically, this involves a potentiometer to
provide feedback about the rotor position, and
some mix of circuitry to drive a current through
the motor inversely proportional to the
difference between the desired position and the
current position. Stepping motors can be used
in simple open-loop control systems these are
generally adequate for systems that operate at
low accelerations with static loads, but closed
loop control may be essential for high
accelerations, particularly if they involve
variable loads. If a stepper in an open-loop
control system is overtorqued, all knowledge of
rotor position is lost and the system must be
reinitialized servomotors are not subject to
this problem.
nach Douglas W. Jones, THE UNIVERSITY OF IOWA
Department of Computer Science
12
Aktuatoren Stellantriebe mit elektrischer
Hilfsenergie Schrittmotoren
Stepping motors come in two varieties, permanent
magnet and variable reluctance (there are also
hybrid motors, which are indistinguishable from
permanent magnet motors from the controller's
point of view). Lacking a label on the motor, you
can generally tell the two apart by feel when no
power is applied. Permanent magnet motors tend to
"cog" as you twist the rotor with your fingers,
while variable reluctance motors almost spin
freely (although they may cog slightly because of
residual magnetization in the rotor). You can
also distinguish between the two varieties with
an ohmmeter. Variable reluctance motors usually
have three (sometimes four) windings, with a
common return, while permanent magnet motors
usually have two independent windings, with or
without center taps. Center-tapped windings are
used in unipolar permanent magnet motors.
Stepping motors come in a wide range of angular
resolution. The coarsest motors typically turn 90
degrees per step, while high resolution permanent
magnet motors are commonly able to handle 1.8 or
even 0.72 degrees per step. With an appropriate
controller, most permanent magnet and hybrid
motors can be run in half-steps, and some
controllers can handle smaller fractional steps
or microsteps. For both permanent magnet and
variable reluctance stepping motors, if just one
winding of the motor is energised, the rotor
(under no load) will snap to a fixed angle and
then hold that angle until the torque exceeds the
holding torque of the motor, at which point, the
rotor will turn, trying to hold at each
successive equilibrium point.
nach Thomas E. Kissell Industrial Electronics,
Prentice Hall 2000
13
Aktuatoren Stellantriebe mit elektrischer
Hilfsenergie Schrittmotoren
Variable Reluctance Motors If your motor has
three windings, typically connected with one
terminal common to all windings, it is most
likely a variable reluctance stepping motor. In
use, the common wire typically goes to the
positive supply and the windings are energized in
sequence. The cross section shown in Figure 1.1
is of 30 degree per step variable reluctance
motor. The rotor in this motor has 4 teeth and
the stator has 6 poles, with each winding wrapped
around two opposite poles. With winding number 1
energised, the rotor teeth marked X are attracted
to this winding's poles. If the current through
winding 1 is turned off and winding 2 is turned
on, the rotor will rotate 30 degrees clockwise so
that the poles marked Y line up with the poles
marked 2. To rotate this motor continuously, we
just apply power to the 3 windings in sequence.
Assuming positive logic, where a 1 means turning
on the current through a motor winding, the
following control sequence will spin the motor
illustrated in Figure 1.1 clockwise 24 steps or 2
revolutions Winding 1 10010010010010010010010
01 Winding 2 0100100100100100100100100
Winding 3 0010010010010010010010010
time ---gt
nach Thomas E. Kissell Industrial Electronics,
Prentice Hall 2000
14
Aktuatoren Stellantriebe mit elektrischer
Hilfsenergie Schrittmotoren
Unipolar Motors Unipolar stepping motors, both
Permanent magnet and hybrid stepping motors with
5 or 6 wires are usually wired with a center tap
on each of two windings. In use, the center taps
of the windings are typically wired to the
positive supply, and the two ends of each winding
are alternately grounded to reverse the direction
of the field provided by that winding. Motor
winding number 1 is distributed between the top
and bottom stator pole, while motor winding
number 2 is distributed between the left and
right motor poles. The rotor is a permanent
magnet with 6 poles, 3 south and 3 north,
arranged around its circumference. For higher
angular resolutions, the rotor must have
proportionally more poles. As shown in the
figure, the current flowing from the center tap
of winding 1 to terminal a causes the top stator
pole to be a north pole while the bottom stator
pole is a south pole. This attracts the rotor
into the position shown. If the power to winding
1 is removed and winding 2 is energised, the
rotor will turn 30 degrees, or one step.
nach Thomas E. Kissell Industrial Electronics,
Prentice Hall 2000
15
Aktuatoren Stellantriebe mit elektrischer
Hilfsenergie Schrittmotoren
Unipolar Motors To rotate the motor continuously,
we just apply power to the two windings in
sequence. Assuming positive logic, where a 1
means turning on the current through a motor
winding, the following two control sequences will
spin the motor clockwise 24 steps or 2
revolutions Winding 1a 1000100010001000100010001
Winding 1b 0010001000100010001000100 Winding
2a 0100010001000100010001000 Winding 2b
0001000100010001000100010 time ---gt Winding 1a
1100110011001100110011001 Winding 1b
0011001100110011001100110 Winding 2a
0110011001100110011001100 Winding 2b
1001100110011001100110011 time ---gt Note that
the two halves of each winding are never
energized at the same time. Both sequences shown
above will rotate a permanent magnet one step at
a time. The top sequence only powers one winding
at a time, as illustrated in the figure above
thus, it uses less power. The bottom sequence
involves powering two windings at a time and
generally produces a torque about 1.4 times
greater than the top sequence while using twice
as much power.
nach Thomas E. Kissell Industrial Electronics,
Prentice Hall 2000
16
Aktuatoren Stellantriebe mit elektrischer
Hilfsenergie Schrittmotoren
Bipolar Motors Bipolar permanent magnet and
hybrid motors are constructed with exactly the
same mechanism as is used on unipolar motors, but
the two windings are wired more simply, with no
center taps. Thus, the motor itself is simpler
but the drive circuitry needed to reverse the
polarity of each pair of motor poles is more
complex. The drive circuitry for such a motor
requires an H-bridge control circuit for each
winding - Briefly, an H-bridge allows the
polarity of the power applied to each end of each
winding to be controlled independently. The
control sequences for single stepping such a
motor are shown below, using and - symbols to
indicate the polarity of the power applied to
each motor terminal
Terminal 1a ------------ --------
Terminal 1b ------------ --------
Terminal 2a ------------ --------
Terminal 2b ------------ --------
time ---gt Note that these sequences are
identical to those for a unipolar permanent
magnet motor, at an abstract level, and that
above the level of the H-bridge power switching
electronics, the control systems for the two
types of motor can be identical.
nach Thomas E. Kissell Industrial Electronics,
Prentice Hall 2000
17
Aktuatoren für Roboten
Grippers A gripper is a device which enables
the holding of an object to be manipulated (a
hand which enables holding, tightening,
handling and releasing of an object).A gripper is
just one component of an automated system. A
gripper can be attached to a robot or it can be
part of a fixed automation system.
nach Applied Robotics http//www.arobotics.com/
solutions/
18
Aktuatoren für Roboten
Arbeitsweise Compressed air is supplied to the
cylinder of the gripper body forcing the piston
up and down, which through a mechanical linkage,
forces the gripper jaws open and
closed. Parallel Gripper The gripper jaws move
in a parallel motion in relation to the gripper
body. 
nach Applied Robotics http//www.arobotics.com/
solutions/
19
Aktuatoren für Roboten
Arbeitsweise Angular Gripper The gripper jaws
are opened and closed around a central pivot
point, moving in a sweeping or arcing motion.
nach Applied Robotics http//www.arobotics.com/
solutions/
20
Aktuatoren für Roboten
Arbeitsweise Toggle Gripper The pivot point
jaw movement acts as an over-center toggle lock,
providing a high grip force to weight ratio. This
mechanism will remain locked even if air pressure
is lost.
nach Applied Robotics http//www.arobotics.com/
solutions/
21
Aktuatoren für Roboten
Arbeitsweise Internal vs External
Gripping Grippers are used in two different
holding options, External and Internal. The
option used is determined by the geometry of the
part to be grasped, the process to be performed,
orientation of the parts to be grasped and the
physical space available.
nach Applied Robotics http//www.arobotics.com/
solutions/
22
Aktuatoren für Roboten
Arbeitsweise Tooling/Finger design
considerations Custom gripper tooling/fingers
are needed for each application. Fingers are used
to actually make contact with the part to be
grasped.  
nach Applied Robotics http//www.arobotics.com/
solutions/
23
Aktuatoren für Roboten
Rotary Actuators The rotary actuator is a
device use to alternate the rotated position of
an object. Just like the human wrist the actuator
enables the rotation of an object, except that
rotary actuators are available in a wide variety
of models with different Sizes, Torques,
Rotation angles.The energy for the rotation is
delivered by pneumatic pressure. The rotary
actuator converts the air pressure from a linear
motion to a rotating motion.
nach Applied Robotics http//www.arobotics.com/
solutions/
24
Aktuatoren für Roboten
Rotary Actuators Arbeitsweise The rotary
actuator converts the air pressure from a linear
motion to a rotating motion. This is done by a
rack and pinion. Air pressure is supplied pushing
the piston in a linear motion, attached to the
piston is a straight set of gear teeth called a
"rack". The rack is pushed in a linear motion as
the piston moves. The gear teeth of the rack are
meshed with the circular gear teeth of a "pinion"
forcing the pinion to rotate. The pinion can be
rotated back into the original position by
supplying air pressure to the opposite side of
the air cylinder pushing the rack back in the
other direction.The pinion is connected to a
shaft that protrudes from the body of the rotary
actuator.  This shaft can be connected to various
tools or grippers.
nach Applied Robotics http//www.arobotics.com/
solutions/
25
A simple thermocouple measurement - short
history credits National Instruments
26
Soft Motion Technologycredits National
Instruments
27
Remote Laboratoriescredits National
Instruments
Write a Comment
User Comments (0)
About PowerShow.com