Machining, joining and repair - PowerPoint PPT Presentation


PPT – Machining, joining and repair PowerPoint presentation | free to download - id: 7bf702-NTBkN


The Adobe Flash plugin is needed to view this content

Get the plugin now

View by Category
About This Presentation

Machining, joining and repair


Machining, joining and repair John Summerscales – PowerPoint PPT presentation

Number of Views:84
Avg rating:3.0/5.0
Slides: 25
Provided by: JohnSu155
Learn more at:


Write a Comment
User Comments (0)
Transcript and Presenter's Notes

Title: Machining, joining and repair

Machining, joining and repair
  • John Summerscales

Machining health and safety
  • machining of composites is probably of
    greater risk than the potentially toxic
    chemicals (if the latter are handled with due
    respect) used in composites manufacture
  • dust and decomposition products arise
  • essential to minimise this risk by
  • extraction at source, or
  • entrapment in a stream of gas or water.

Machining of composites
  • heterogeneous, anisotropic structure
  • hence greater similarity to wood than to Fe/Al
  • low heat dissipation
  • low coefficient of thermal expansion
  • hot tool expands more rapidly then work-piece.
  • coefficient of thermal expansion for a holein an
    unconstrained plate of materialis the same as
    for the material containing the hole.

Machining of composites
  • cutting composite materials/structures wears
    cutting tools more rapidly than cutting
    traditional engineering materials.
  • tool durability and initial cost
  • high speed steel ltlt carbide lt boron nitride (BN)
    or polycrystalline diamond (PCD)
  • more expensive cutting tool is cost-efficient
  • when costs calculated over tool-life
  • surface finish will be smoother

Machining water-jet
  • normally conducted with abrasive powder
  • e.g. garnet injected into the jet.
  • for abrasive water jet cutting (AWC),
  • flow speeds of 850 m/s
  • 4-8 litres/min through a 0.8 mm diameter hole
  • cut is 0.5-2.50.4 mm wide and tapered
  • water absorption may be an issue, especially for
  • materials with weak fibre-matrix interfaces
  • aramid composites

Machining LASER
  • CO2 LASER cutting
  • beam of 0.1-1.0 mm focussed diameter
  • co-axial inert gas
  • depth of focussed field is proportional to
  • tolerance is typically 0.5 mm.
  • Ease of cutting
  • aramids are easily machined with lasers
  • glass is intermediate, and
  • carbon is difficult because of its high thermal

Machining - aramids
  • special tools and techniques are appropriate
  • e.g. band saw
  • fine tooth blade (550-866 teeth/m)
  • straight-set or raker-set teeth
  • operate at high speed to stretch and shear
  • to minimise the production of fuzzand keep the
    teeth from snagging fibresrun the blade in
    reverse (teeth pointing upwards)
  • HS issues with sub-diameter particles
  • also relevant for natural fibre composites?

Joining fasteners
  • in general, double lap jointspreferable to
    single lap shear joints
  • fasteners should normally be
  • 2 - 4 diameters from edge, and
  • 3 - 4 diameters from adjacent fasteners
  • Stress analysis dependent on
  • any pre-load
  • stacking sequence
  • free-edge effects, etc

Joining fasteners
  • typical failures include
  • bearing failure,
  • shear-out,
  • cleavage, and
  • direct failure of substrate or fastener material
  • important considerations in joint design
  • matrix creep torque applies compressive
    stress in the unreinforced direction of the
  • galvanic corrosion
  • C and Al at opposite ends of the electrochemical
    corrosion series
  • thin fibreglass layer minimises such corrosion

BigHead Bonding Fasteners images from
  • Extended heads to spread load

Joining adhesive bonding
  • adhesive joints
  • spread load over more uniform area than fasteners
  • result in a lower stress concentration
  • good joint design isessential for
    highly-stressed applications
  • joints
  • best loaded in compression
  • acceptable performance in shear
  • avoid tension, especially peel and cleavage

Correct joint design ... redrawn from diagrams
in The Permabond Engineers Guide to Adhesives
  • Compression good Shear OK

Wrong joint design... redrawn from diagrams in
The Permabond Engineers Guide to Adhesives
  • Peel (one flexible) Cleavage (two rigid)

Bonding - surface preparation
  • Surface preparation is crucial to achievement of
    a good bond
  • for composites normallydegrease-abrade-degrease-d
    ry sequence
  • shot-blasting the surface is inappropriateit
    tends to remove too much substrate
  • plastic bead blasting (or similar blast media)
    permits greater control of material removal
  • aerospace industry avoids silicone release
  • material transfer to the part surface can cause
    significant weakening of the subsequent bond.

Joining welding thermoplastics
  • joining of thermoplastic matrix composites
  • heat - compress - intermolecular diffusion - cool
  • variety of techniques to heat the substrates
  • hot-plate
  • resistance heating/induction heating
  • infrared/laser
  • dielectric/microwave
  • friction-inertia/vibration welding
  • ultrasonic welding
  • solvent welding also possible
  • beware health and safety and solvent entrapment

Painting/surface coatings
  • painting of composite substrates
  • surface preparation as for adhesive bonding
  • current trend towards in in-mould coating
  • eliminates solvents in the workplace
  • reduces labour required
  • more uniform coating thickness
  • but only on horizontal surfaces in compression
  • PU research funded by
  • DTI Technology Programme/Zero Emission
  • EU REA grant FP7-SME-2011-1-286520.

Gel-coat application
  • By hand-painting or spray onto the open mould.
  • The process releases volatile organic compounds
    (VOC) into the workplace and the environment.
  • By mould-opening and flow into the space
  • horizontal surfaces increase by the required
  • vertical surfaces see no increase in space

New in-mould process
  • InGeCt IMGC (in-mould gel-coating)
  • applicable to RTM, RIFT and similar processes
  • mould cavity divided by a separator layer
  • separator has texture to
  • provide stand-off from mould surface
  • enhance physical bond to laminate and gel-coat
  • IPR protected by British Patent GB 2 432 336A
  • InGeCt IMS (in-mould surfacing)
  • silicone shim defines space for gel coat
  • mould laminate remove shim inject gelcoat

IMGC concept
  • as for RTM, but with two injection ports

InGeCt double tetrahedron mould
challenging geometry for test mould tool
  • before repair, non-destructive evaluation
  • to determine full extent of damage
  • design the repair
  • for a general repair
  • the hole is normally tapered at ten times the
  • for an aerospace repair
  • the hole is normally tapered at fifty-times the
    depthor at 12.7 mm/ply (half-inch/ply) 
  • appropriate machining techniques
  • to remove the failed material
  • rebuild the laminate

Repair - sandwich panels
  • it may be practical to
  • replace just one laminate skin, or
  • replace one skin and the core,leaving the second
    face intact.
  • foaming adhesive used to bond-in replacement

Self-healing composites
  • proposed use of hollow glass fibrescontaining
    uncured resin
  • low viscosity resin systems generally do not
    achieve the highest mechanical properties
  • high viscosity resin systems would require some
    form of pressure to facilitate flow
  • how to mix and flow with no applied pressure ?
  • University of Delaware Center for Composite
    Materials is developing biomineralisation as a
    route to the repair of the fibre network

  • Machining
  • cutting
  • abrasive water jet
  • laser
  • Joining
  • fasteners
  • adhesive bonding
  • welding thermoplastic
  • painting/surface coating
  • Repair